医学数据分析中的偏特征图可视化

在医学领域,我们经常需要处理复杂的数据模型,探索特征与目标变量之间的关系。偏特征图(Partial Dependence Plot, PDP)是一种强大的可视化技术,可以帮助我们更好地理解模型的行为。通过这种图形,我们可以直观地观察每个特征对模型预测结果的影响程度。

在本文中,我们将介绍如何使用Python中的scikit-learn库绘制医学数据的偏特征图,包括单变量PDP、结合直方图的PDP,以及双变量PDP。这些可视化技术将帮助我们深入分析模型,优化医学数据分析的性能。

数据准备

首先,我们导入必要的Python库,并读取包含医疗数据的Excel文件:

python 复制代码
import numpy as np
import pandas as pd
from sklearn.ensemble import RandomForestRegressor
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split

df = pd.read_excel('data.xlsx')
feature_names = ['X1', 'X2', 'X3', 'X4', 'X5', 'X6', 'X7']
X = df[feature_names]
y = df['Y'].values

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

在这个示例中,我们使用了7个特征(X1到X7)来预测一个目标变量Y。我们将数据集拆分为训练集和测试集,以便后续模型训练和评估。

模型训练

接下来,我们使用RandomForestRegressor训练一个回归模型:

python 复制代码
rf = RandomForestRegressor(n_estimators=100, random_state=42)
rf.fit(X_train, y_train)

这里我们设置了100棵决策树,并固定随机种子,确保结果可复现。

绘制单变量偏特征图

偏特征图可以帮助我们理解每个特征对模型预测结果的影响。我们可以逐个绘制每个特征的偏特征图:

python 复制代码
for idx in range(len(feature_names)):
    fig, ax = plt.subplots(figsize=(10, 6))
    PartialDependenceDisplay.from_estimator(
        rf,
        X,
        features=[idx],
        contour_kw={'cmap': 'viridis', 'alpha': 0.8},
        ax=ax
    )
    ax.tick_params(axis='x', which='both', length=0)
    plt.title("Partial Dependence Plots for {}".format(feature_names[idx]))
    ax.set_xlabel(feature_names[idx])
    ax.set_ylabel("Partial Dependence")
    plt.tight_layout()
    plt.savefig('PDP_' + feature_names[idx] + '.pdf')
    plt.show()

这段代码会为每个特征生成一张偏特征图,展示该特征对模型预测结果的影响。我们可以观察每个图形,了解模型是如何利用这些特征进行预测的。例如,我们可以发现某些特征呈现出非线性关系,这可能需要我们在建模时考虑更复杂的关系。

绘制单变量偏特征图和直方图

有时我们希望同时查看特征的分布情况,以更好地理解模型的行为。我们可以在偏特征图上添加直方图:

python 复制代码
for feature in feature_names:
    fig, ax = plt.subplots(figsize=(10, 6))
    PartialDependenceDisplay.from_estimator(
        rf,
        X_test,
        features=[feature],
        kind='both',
        grid_resolution=50,
        contour_kw={'cmap': 'viridis', 'alpha': 0.8},
        ax=ax
    )
    ax.set_title(f"Partial Dependence Plot for {feature}")
    ax.set_ylabel("Partial Dependence")
    ax.set_ylim(0, 700)
    ax.tick_params(axis='x', length=0)

    ax_hist = ax.twinx()
    ax_hist.hist(X[feature], bins=20, facecolor='gray', alpha=0.5)
    ax_hist.set_xlabel(feature)
    ax_hist.set_ylim(0, 1800)
    ax_hist.set_yticks([])
    ax.legend()

    plt.tight_layout()
    plt.savefig(f'PDP_BAR{feature}.pdf')
    plt.show()

这段代码会为每个特征生成一张包含偏特征图和直方图的图形。通过这种方式,我们可以更好地理解特征的分布情况以及它对模型预测的影响。例如,我们可以发现某些特征的分布可能存在偏斜或异常值,这可能需要我们在预处理数据时进行相应的处理。

绘制双变量偏特征图

有时我们可能需要探索特征之间的交互效应。为此,我们可以绘制双变量偏特征图:

python 复制代码
two_features = ['X1', 'X2'] 
fig, ax = plt.subplots(figsize=(10, 6))
PartialDependenceDisplay.from_estimator(
    rf,
    X_test,
    features=[two_features],
    kind='average',
    grid_resolution=50,
    contour_kw={'cmap': 'viridis', 'alpha': 0.8},
    ax=ax
)
plt.suptitle('2D Partial Dependence Plot for {} and {}'.format(two_features[0], two_features[1]))
plt.savefig('PDF_X1X2.pdf')
plt.show()

这段代码会绘制两个特征(X1和X2)的联合偏特征图。通过这种方式,我们可以更深入地理解特征之间的相互作用,并进一步优化模型的性能。例如,我们可以发现某些特征存在协同效应或抑制效应,这可能需要我们在特征工程阶段考虑构建新的复合特征。

总结

偏特征图是一种非常有用的可视化技术,它可以帮助我们更好地理解医学数据模型的行为。在本文中,我们详细介绍了如何使用Python中的scikit-learn库绘制单变量PDP、单变量PDP+直方图以及双变量PDP。通过这些图形,我们可以更深入地洞察特征对模型预测结果的影响,从而进一步优化和改进医学数据分析模型。

希望本文对您在医学领域的数据分析工作有所帮助。如果您有任何进一步的问题或需求,欢迎随时与我交流。

相关推荐
笨蛋少年派12 分钟前
跨境电商大数据分析系统案例:③建模、分析与暂时收尾
hive·数据挖掘·数据分析
Cisyam^33 分钟前
openGauss + LangChain Agent实战:从自然语言到SQL的智能数据分析助手
sql·数据分析·langchain
CC数学建模2 小时前
被问爆的 “高颜值 + 强功能” 学生管理系统!Flask+MySQL 全栈开发,自带数据分析 + 幸福指标,毕设 / 竞赛直接
mysql·数据分析·flask
咚咚王者4 小时前
人工智能之数据分析 Matplotlib:第四章 图形类型
人工智能·数据分析·matplotlib
语落心生6 小时前
大宗供应链企业舆情指标系统设计(一)舆情指标设计
数据分析
语落心生6 小时前
餐饮供应链的数仓设计思考 (五) 系统稳定性与SLA保障体系
数据分析
语落心生7 小时前
餐饮供应链的数仓设计思考 (四) 餐饮连锁企业数据模型可解释性
数据分析
语落心生7 小时前
餐饮供应链的数仓设计思考 (三) 数据管道与核心系统API对接方案
数据分析
语落心生7 小时前
餐饮供应链的数仓设计思考 (二) 餐饮连锁企业深度业务模型分析
数据分析
语落心生7 小时前
餐饮供应链的数仓设计思考 (一) 系统设计大纲
数据分析