二百七十五、Kettle——ClickHouse增量导入数据补全以及数据修复记录表数据(实时)

一、目的

在完成数据修复后,需要生成修复记录

二、Hive中原有代码

2.1 表结构

复制代码
--52、数据补全以及数据修复记录表 dwd_data_correction_record
create  table  if not exists  hurys_db.dwd_data_correction_record(
    data_type      int        comment '数据类型 1:转向比,2:统计,3:评价,4:区域,6:静态排队,7:动态排队',
    device_no      string     comment '设备编号',
    id             string     comment '唯一ID',
    create_time    timestamp  comment '创建时间',
    record_type    int        comment '记录类型 0:补全,1:修复'
)
comment '数据补全以及数据修复记录表'
partitioned by (day string)
stored as orc
;

2.2 SQL代码

复制代码
--6 静态排队数据修复记录
insert into table  hurys_db.dwd_data_correction_record partition(day)
select
       '6' data_type,
       t1.device_no,
       t1.id,
       t1.create_time,
       '1' record_type,
       t1.day
from hurys_db.dwd_queue_error as t1
right join hurys_db.dwd_queue as t2
on t1.id=t2.id and t1.device_no=t2.device_no
where t1.id is not null and t1.day='2024-09-04'
;

三、ClickHouse中现有代码

3.1 表结构

复制代码
--52、数据补全以及数据修复记录表 dwd_data_correction_record
create  table  if not exists  hurys_jw.dwd_data_correction_record(
    data_type      Int32      comment '数据类型 1:转向比,2:统计,3:评价,4:区域,6:静态排队,7:动态排队',
    device_no      String     comment '设备编号',
    id             String     comment '唯一ID',
    create_time    DateTime   comment '创建时间',
    record_type    Int32      comment '记录类型 0:补全,1:修复',
    day            Date       comment '日期'
)
ENGINE = MergeTree
PARTITION BY day
PRIMARY KEY (day,id)
ORDER BY (day,id)
SETTINGS index_granularity = 8192;

3.2 SQL代码

复制代码
--6 静态排队数据修复记录
select
       '6' data_type,
       t1.device_no,
       t1.id,
       t1.create_time,
       '1' record_type,
       cast(t1.day as String) day
from hurys_jw.dwd_queue_error as t1
inner join  hurys_jw.dwd_queue as t2
on t1.id=t2.id and t1.device_no=t2.device_no
where t1.id is not null --and t1.create_time > ?
group by t1.device_no,  t1.id, t1.create_time,  t1.day
;

四、Kettle任务

由于修复记录必须是数据完成修复后执行,但是又不能每天执行一次,因为数据修复任务最后会删除错误数据表当天分区数据

4.1 newtime 2

4.2 替换NULL值 2

4.3 clickhouse输入 2

select

'6' data_type,

t1.device_no,

t1.id,

t1.create_time,

'1' record_type,

cast(t1.day as String) day

from hurys_jw.dwd_queue_error as t1

inner join hurys_jw.dwd_queue as t2

on t1.id=t2.id and t1.device_no=t2.device_no

where t1.id is not null and t1.create_time > ?

group by t1.device_no, t1.id, t1.create_time, t1.day

;

4.4 字段选择 2

4.5 clickhouse输出 2

4.6 执行任务

修复记录和数据修复任务放在一个kettle任务里

相关推荐
risc1234564 天前
【ClickHouse】RollingBitmap
clickhouse
斯特凡今天也很帅4 天前
clickhouse如何查看操作记录,从日志来查看写入是否成功
数据库·clickhouse
袖清暮雨9 天前
ClickHouse讲解
大数据·数据库·数据仓库·clickhouse·oracle
江枫渔火L10 天前
使用clickhouse的ReplacingMergeTree引擎表做活跃玩家信息表
数据库·clickhouse
潇凝子潇12 天前
Doris ClickHouse Greenplum 对比
clickhouse·doris·greenplum
递归尽头是星辰14 天前
ClickHouse核心优势分析与场景实战
大数据·数据仓库·clickhouse·实时分析·实时查询
鲁尼的小宝贝15 天前
基于Flink的数据中台管理平台
java·大数据·clickhouse·flink·yarn
问道飞鱼19 天前
【大数据知识】今天聊聊Clickhouse部署方案
大数据·clickhouse·部署
Fireworkitte22 天前
ClickHouse详解
clickhouse
知其_所以然23 天前
使用docker安装clickhouse集群
clickhouse·docker·容器