Python WordCloud库与jieba分词生成词云图的完整指南

Python WordCloud库与jieba分词生成词云图的完整指南

关键技术点及代码示例

1. 安装必要的库

使用pip安装wordcloudjieba库:

bash 复制代码
pip install wordcloud
pip install jieba

2. jieba分词

精确模式
python 复制代码
import jieba

text = "Python是广泛使用的编程语言。它被用于网站开发、数据分析、人工智能等多个领域。"
seg_list = jieba.cut(text, cut_all=False)  # 精确模式
print("精确模式: " + "/ ".join(seg_list))
搜索引擎模式
python 复制代码
seg_list = jieba.cut_for_search(text)  # 搜索引擎模式
print("搜索引擎模式: " + "/ ".join(seg_list))

3. 去除停用词

创建一个停用词列表,并从分词结果中去除停用词:

python 复制代码
with open('stopwords.txt', 'r', encoding='utf-8') as f:
    stopwords = [line.strip() for line in f.readlines()]

words = [word for word in seg_list if word not in stopwords and len(word) > 1]

4. 统计词频

使用collections.Counter类统计词频:

python 复制代码
from collections import Counter

counter = Counter(words)
for word, count in counter.most_common(10):
    print(word, count)

5. 生成词云图

创建WordCloud对象并生成词云图:

python 复制代码
from wordcloud import WordCloud
import matplotlib.pyplot as plt

wordcloud = WordCloud(font_path='path_to_your_chinese_font.ttf',  # 指定中文字体路径
                      background_color='white').generate_from_frequencies(dict(counter))

plt.figure(figsize=(10, 5))
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis('off')  # 不显示坐标轴
plt.show()

6. 保存词云图

将生成的词云图保存为图片文件:

python 复制代码
wordcloud.to_file('wordcloud.png')

完整代码

结合以上关键技术点,以下是生成词云图的完整代码:

python 复制代码
import jieba
from collections import Counter
from wordcloud import WordCloud
import matplotlib.pyplot as plt

text = "Python是广泛使用的编程语言。它被用于网站开发、数据分析、人工智能等多个领域。"

# 使用jieba进行中文分词
seg_list = jieba.cut(text, cut_all=False)  # 精确模式

# 要有这个文件stopwords.txt   去除停用词
with open('stopwords.txt', 'r', encoding='utf-8') as f:
    stopwords = [line.strip() for line in f.readlines()]
words = [word for word in seg_list if word not in stopwords and len(word) > 1]

# 统计词频
counter = Counter(words)
# 打印词频最高的10个词
for word, count in counter.most_common(10):
    print(word, count)

# 生成词云图
wordcloud = WordCloud(font_path='C:/Windows/Fonts/simhei.ttf',  # 指定中文字体路径
                      background_color='white').generate_from_frequencies(dict(counter))

# 显示词云图
plt.figure(figsize=(10, 5))
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis('off')  # 不显示坐标轴
plt.show()

# 保存词云图
wordcloud.to_file('wordcloud.png')

注意事项

  • 确保stopwords.txt文件中包含了你想要去除的停用词,每行一个词。
  • font_path参数需要指向一个有效的中文字体文件路径,否则中文字符将无法正确显示。
  • path_to_your_chinese_font.ttf需要替换为你实际的中文字体文件路径。
  • stopwords.txtwordcloud.png是示例文件名,你可以根据需要修改它们。

通过上述代码,你可以实现从中文文本的分词到词云图的生成和保存的完整流程。这是一个非常实用的文本数据可视化工具,可以帮助你快速理解文本数据中的关键信息。

相关推荐
我先去打把游戏先7 分钟前
ESP32开发指南(基于IDF):连接AWS,乐鑫官方esp-aws-iot-master例程实验、跑通
开发语言·笔记·单片机·物联网·学习·云计算·aws
极客数模27 分钟前
2025年(第六届)“大湾区杯”粤港澳金融数学建模竞赛准备!严格遵循要求,拿下大奖!
大数据·python·数学建模·金融·分类·图论·boosting
逻极39 分钟前
Rust数据类型(上):标量类型全解析
开发语言·后端·rust
倔强青铜三41 分钟前
苦练Python第73天:玩转对象持久化,pickle模块极速入门
人工智能·python·面试
Zhangzy@42 分钟前
Rust 编译优化选项
android·开发语言·rust
百锦再1 小时前
第2章 第一个Rust程序
java·开发语言·后端·rust·eclipse·tomcat·hibernate
Zhangzy@1 小时前
Rust 中的注释与文档注释实践指南
开发语言·后端·rust
像风一样自由20201 小时前
使用 Rust 开发图片切分工具:从零到发布的完整指南
开发语言·后端·rust
程序员三藏1 小时前
Postman持久化保存/设置断言详解
自动化测试·软件测试·python·测试工具·职场和发展·接口测试·postman
java1234_小锋1 小时前
PyTorch2 Python深度学习 - 卷积神经网络(CNN)介绍实例 - 使用MNIST识别手写数字示例
python·深度学习·cnn·pytorch2