Python WordCloud库与jieba分词生成词云图的完整指南

Python WordCloud库与jieba分词生成词云图的完整指南

关键技术点及代码示例

1. 安装必要的库

使用pip安装wordcloudjieba库:

bash 复制代码
pip install wordcloud
pip install jieba

2. jieba分词

精确模式
python 复制代码
import jieba

text = "Python是广泛使用的编程语言。它被用于网站开发、数据分析、人工智能等多个领域。"
seg_list = jieba.cut(text, cut_all=False)  # 精确模式
print("精确模式: " + "/ ".join(seg_list))
搜索引擎模式
python 复制代码
seg_list = jieba.cut_for_search(text)  # 搜索引擎模式
print("搜索引擎模式: " + "/ ".join(seg_list))

3. 去除停用词

创建一个停用词列表,并从分词结果中去除停用词:

python 复制代码
with open('stopwords.txt', 'r', encoding='utf-8') as f:
    stopwords = [line.strip() for line in f.readlines()]

words = [word for word in seg_list if word not in stopwords and len(word) > 1]

4. 统计词频

使用collections.Counter类统计词频:

python 复制代码
from collections import Counter

counter = Counter(words)
for word, count in counter.most_common(10):
    print(word, count)

5. 生成词云图

创建WordCloud对象并生成词云图:

python 复制代码
from wordcloud import WordCloud
import matplotlib.pyplot as plt

wordcloud = WordCloud(font_path='path_to_your_chinese_font.ttf',  # 指定中文字体路径
                      background_color='white').generate_from_frequencies(dict(counter))

plt.figure(figsize=(10, 5))
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis('off')  # 不显示坐标轴
plt.show()

6. 保存词云图

将生成的词云图保存为图片文件:

python 复制代码
wordcloud.to_file('wordcloud.png')

完整代码

结合以上关键技术点,以下是生成词云图的完整代码:

python 复制代码
import jieba
from collections import Counter
from wordcloud import WordCloud
import matplotlib.pyplot as plt

text = "Python是广泛使用的编程语言。它被用于网站开发、数据分析、人工智能等多个领域。"

# 使用jieba进行中文分词
seg_list = jieba.cut(text, cut_all=False)  # 精确模式

# 要有这个文件stopwords.txt   去除停用词
with open('stopwords.txt', 'r', encoding='utf-8') as f:
    stopwords = [line.strip() for line in f.readlines()]
words = [word for word in seg_list if word not in stopwords and len(word) > 1]

# 统计词频
counter = Counter(words)
# 打印词频最高的10个词
for word, count in counter.most_common(10):
    print(word, count)

# 生成词云图
wordcloud = WordCloud(font_path='C:/Windows/Fonts/simhei.ttf',  # 指定中文字体路径
                      background_color='white').generate_from_frequencies(dict(counter))

# 显示词云图
plt.figure(figsize=(10, 5))
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis('off')  # 不显示坐标轴
plt.show()

# 保存词云图
wordcloud.to_file('wordcloud.png')

注意事项

  • 确保stopwords.txt文件中包含了你想要去除的停用词,每行一个词。
  • font_path参数需要指向一个有效的中文字体文件路径,否则中文字符将无法正确显示。
  • path_to_your_chinese_font.ttf需要替换为你实际的中文字体文件路径。
  • stopwords.txtwordcloud.png是示例文件名,你可以根据需要修改它们。

通过上述代码,你可以实现从中文文本的分词到词云图的生成和保存的完整流程。这是一个非常实用的文本数据可视化工具,可以帮助你快速理解文本数据中的关键信息。

相关推荐
pale_moonlight2 小时前
十、 Scala 应用实践 (上)
大数据·开发语言·scala
6***v4172 小时前
搭建Golang gRPC环境:protoc、protoc-gen-go 和 protoc-gen-go-grpc 工具安装教程
开发语言·后端·golang
1***s6322 小时前
Rust在WebAssembly中的应用实践
开发语言·rust·wasm
水痕012 小时前
go使用cobra来启动项目
开发语言·后端·golang
银河邮差2 小时前
python实战-用海外代理IP抓LinkedIn热门岗位数据
后端·python
scixing2 小时前
函数式编程 第八讲 循环者,递归也
开发语言·c#
2501_941879813 小时前
Python在微服务高并发异步API网关请求处理与智能路由架构中的实践
java·开发语言
第二只羽毛3 小时前
遵守robots协议的友好爬虫
大数据·爬虫·python·算法·网络爬虫
好难取啊3 小时前
[python学习]案例01:随机验证码与账号密码修改
python
秋邱3 小时前
价值升维!公益赋能 + 绿色技术 + 终身学习,构建可持续教育 AI 生态
网络·数据库·人工智能·redis·python·学习·docker