Caffeine 手动策略缓存 put() 方法源码解析

BoundedLocalManualCache put() 方法源码解析

先看一下BoundedLocalManualCache的类图

com.github.benmanes.caffeine.cache.BoundedLocalCache中定义的BoundedLocalManualCache静态内部类。

static class BoundedLocalManualCache<K, V> implements LocalManualCache<K, V>, Serializable

实现了LocalManualCache接口,这个接口提供了Cache接口的骨架实现,以最简的方式去实现一个LocalCache

详细查看LocalManualCache接口里定义的内容,代码也不多,直接贴到内容里:

复制代码
interface LocalManualCache<K, V> extends Cache<K, V> {

  /** Returns the backing {@link LocalCache} data store. */
  LocalCache<K, V> cache();

  @Override
  default long estimatedSize() {
    return cache().estimatedSize();
  }

  @Override
  default void cleanUp() {
    cache().cleanUp();
  }

  @Override
  default @Nullable V getIfPresent(Object key) {
    return cache().getIfPresent(key, /* recordStats */ true);
  }

  @Override
  default @Nullable V get(K key, Function<? super K, ? extends V> mappingFunction) {
    return cache().computeIfAbsent(key, mappingFunction);
  }

  @Override
  default Map<K, V> getAllPresent(Iterable<?> keys) {
    return cache().getAllPresent(keys);
  }

  @Override
  default Map<K, V> getAll(Iterable<? extends K> keys,
      Function<Iterable<? extends K>, Map<K, V>> mappingFunction) {
    requireNonNull(mappingFunction);

    Set<K> keysToLoad = new LinkedHashSet<>();
    Map<K, V> found = cache().getAllPresent(keys);
    Map<K, V> result = new LinkedHashMap<>(found.size());
    for (K key : keys) {
      V value = found.get(key);
      if (value == null) {
        keysToLoad.add(key);
      }
      result.put(key, value);
    }
    if (keysToLoad.isEmpty()) {
      return found;
    }

    bulkLoad(keysToLoad, result, mappingFunction);
    return Collections.unmodifiableMap(result);
  }

  /**
   * Performs a non-blocking bulk load of the missing keys. Any missing entry that materializes
   * during the load are replaced when the loaded entries are inserted into the cache.
   */
  default void bulkLoad(Set<K> keysToLoad, Map<K, V> result,
      Function<Iterable<? extends @NonNull K>, @NonNull Map<K, V>> mappingFunction) {
    boolean success = false;
    long startTime = cache().statsTicker().read();
    try {
      Map<K, V> loaded = mappingFunction.apply(keysToLoad);
      loaded.forEach((key, value) ->
          cache().put(key, value, /* notifyWriter */ false));
      for (K key : keysToLoad) {
        V value = loaded.get(key);
        if (value == null) {
          result.remove(key);
        } else {
          result.put(key, value);
        }
      }
      success = !loaded.isEmpty();
    } catch (RuntimeException e) {
      throw e;
    } catch (Exception e) {
      throw new CompletionException(e);
    } finally {
      long loadTime = cache().statsTicker().read() - startTime;
      if (success) {
        cache().statsCounter().recordLoadSuccess(loadTime);
      } else {
        cache().statsCounter().recordLoadFailure(loadTime);
      }
    }
  }

  @Override
  default void put(K key, V value) {
    cache().put(key, value);
  }

  @Override
  default void putAll(Map<? extends K, ? extends V> map) {
    cache().putAll(map);
  }

  @Override
  default void invalidate(Object key) {
    cache().remove(key);
  }

  @Override
  default void invalidateAll(Iterable<?> keys) {
    cache().invalidateAll(keys);
  }

  @Override
  default void invalidateAll() {
    cache().clear();
  }

  @Override
  default CacheStats stats() {
    return cache().statsCounter().snapshot();
  }

  @Override
  default ConcurrentMap<K, V> asMap() {
    return cache();
  }
}

可以看到,CacheLoader接口定义了loadloadAllputputAllinvalidateinvalidateAllstatsasMap等方法,做一个简单实现。这些方法提供了缓存的基本操作,如加载缓存、添加缓存、移除缓存、获取缓存统计信息等。

Manual Cache 源码

复制代码
static class BoundedLocalManualCache<K, V> implements LocalManualCache<K, V>, Serializable {
    private static final long serialVersionUID = 1;

    final BoundedLocalCache<K, V> cache;
    final boolean isWeighted;

    @Nullable Policy<K, V> policy;

    BoundedLocalManualCache(Caffeine<K, V> builder) {
      this(builder, null);
    }

    BoundedLocalManualCache(Caffeine<K, V> builder, @Nullable CacheLoader<? super K, V> loader) {
      cache = LocalCacheFactory.newBoundedLocalCache(builder, loader, /* async */ false);
      isWeighted = builder.isWeighted();
    }

    @Override
    public BoundedLocalCache<K, V> cache() {
      return cache;
    }

    @Override
    public Policy<K, V> policy() {
      return (policy == null)
          ? (policy = new BoundedPolicy<>(cache, Function.identity(), isWeighted))
          : policy;
    }

    @SuppressWarnings("UnusedVariable")
    private void readObject(ObjectInputStream stream) throws InvalidObjectException {
      throw new InvalidObjectException("Proxy required");
    }

    Object writeReplace() {
      return makeSerializationProxy(cache, isWeighted);
    }
  }

定义了一个BoundedLocalCache属性,还有权重的标志位isWeighted,以及一个Policy属性。BoundedLocalManualCache的构造方法中,调用了LocalCacheFactory.newBoundedLocalCache方法,创建了一个BoundedLocalCache对象,并赋值给cache属性。policy属性则是在policy()方法中创建的。policy 是一个BoundedPolicy对象,它实现了Policy接口,用于管理缓存策略。BoundedPolicy源码紧接着就在BoundedLocalManualCache下面,这里就不贴出来了。

static final class BoundedPolicy<K, V> implements Policy<K, V>,里具体定义了了BoundedLocalCache的缓存策略,比如缓存大小,缓存权重,缓存过期时间等。

接下来我们看BoundedLocalCacheput方法

手动使用调用cache.put(k, v);会调用put(key, value, expiry(), /* notifyWriter */ true, /* onlyIfAbsent */ false);

具体的参数解释如下:

  • key:要放入缓存的键。
  • value:要放入缓存的值。
  • expiry:缓存的过期时间,默认为Duration.ZERO,表示永不过期。
  • notifyWriter:是否通知写入者,默认为true
  • onlyIfAbsent:是否只在缓存中不存在该键时才放入,默认为false

put 方法源码如下:

复制代码
@Nullable V put(K key, V value, Expiry<K, V> expiry, boolean notifyWriter, boolean onlyIfAbsent) {
    requireNonNull(key);
    requireNonNull(value);

    Node<K, V> node = null;
    long now = expirationTicker().read();
    int newWeight = weigher.weigh(key, value);
    for (;;) {
        // 获取 prior 节点
      Node<K, V> prior = data.get(nodeFactory.newLookupKey(key));
      if (prior == null) {
        // 如果不存在 prior 节点,则创建新的节点
        if (node == null) {
          node = nodeFactory.newNode(key, keyReferenceQueue(),
              value, valueReferenceQueue(), newWeight, now);
          setVariableTime(node, expireAfterCreate(key, value, expiry, now));
        }
        // notifyWriter 为 true 且存在Writer时,通知Writer
        if (notifyWriter && hasWriter()) {
          Node<K, V> computed = node;
          prior = data.computeIfAbsent(node.getKeyReference(), k -> {
            writer.write(key, value);
            return computed;
          });
          //    如果存在 prior 节点,调用 afterWrite 方法
          if (prior == node) {
            afterWrite(new AddTask(node, newWeight));
            return null;
            // 如果onlyIfAbsent 为 true。代表只在缓存中不存在该键时才放入缓存
          } else if (onlyIfAbsent) {
            V currentValue = prior.getValue();
            if ((currentValue != null) && !hasExpired(prior, now)) {
              if (!isComputingAsync(prior)) {
                tryExpireAfterRead(prior, key, currentValue, expiry(), now);
                setAccessTime(prior, now);
              }
              afterRead(prior, now, /* recordHit */ false);
              return currentValue;
            }
          }
        // 如果 notifyWriter 为 false,直接放入缓存
        } else {
          prior = data.putIfAbsent(node.getKeyReference(), node);
          if (prior == null) {
            afterWrite(new AddTask(node, newWeight));
            return null;
          } else if (onlyIfAbsent) {
            // An optimistic fast path to avoid unnecessary locking
            V currentValue = prior.getValue();
            if ((currentValue != null) && !hasExpired(prior, now)) {
              if (!isComputingAsync(prior)) {
                tryExpireAfterRead(prior, key, currentValue, expiry(), now);
                setAccessTime(prior, now);
              }
              afterRead(prior, now, /* recordHit */ false);
              return currentValue;
            }
          }
        }
      } else if (onlyIfAbsent) {
        // An optimistic fast path to avoid unnecessary locking
        V currentValue = prior.getValue();
        if ((currentValue != null) && !hasExpired(prior, now)) {
          if (!isComputingAsync(prior)) {
            tryExpireAfterRead(prior, key, currentValue, expiry(), now);
            setAccessTime(prior, now);
          }
          afterRead(prior, now, /* recordHit */ false);
          return currentValue;
        }
      }
        // 如果 prior != null,则说明该节点已经存在,则尝试获取锁
      V oldValue;
      long varTime;
      int oldWeight;
      boolean expired = false;
      boolean mayUpdate = true;
      boolean exceedsTolerance = false;
      synchronized (prior) {
        if (!prior.isAlive()) {
          continue;
        }
        oldValue = prior.getValue();
        oldWeight = prior.getWeight();
        // 如果 oldValue == null,通过 expireAfterCreate 方法计算过期时间,并删除key对应的值
        if (oldValue == null) {
          varTime = expireAfterCreate(key, value, expiry, now);
          writer.delete(key, null, RemovalCause.COLLECTED);
          // 返回prior是否过期,true,则删除key对应的值
        } else if (hasExpired(prior, now)) {
          expired = true;
          varTime = expireAfterCreate(key, value, expiry, now);
          writer.delete(key, oldValue, RemovalCause.EXPIRED);
          // 如果 onlyIfAbsent 为 true,则不更新key对应的值,返回新的过期时间
        } else if (onlyIfAbsent) {
          mayUpdate = false;
          varTime = expireAfterRead(prior, key, value, expiry, now);
        } else {
          varTime = expireAfterUpdate(prior, key, value, expiry, now);
        }
        // notifyWriter 为true,如果过期或者更新了值,则通知Writer
        if (notifyWriter && (expired || (mayUpdate && (value != oldValue)))) {
          writer.write(key, value);
        }
        // 如果mayUpdate为true,计算过期时间是否超出容忍度
        if (mayUpdate) {
          exceedsTolerance =
              (expiresAfterWrite() && (now - prior.getWriteTime()) > EXPIRE_WRITE_TOLERANCE)
              || (expiresVariable()
                  && Math.abs(varTime - prior.getVariableTime()) > EXPIRE_WRITE_TOLERANCE);

          setWriteTime(prior, now);
          prior.setWeight(newWeight);
          prior.setValue(value, valueReferenceQueue());
        }
        // 设置访问时间和过期时间
        setVariableTime(prior, varTime);
        setAccessTime(prior, now);
      }
    
      // 如果在创建缓存时设置了移除监听器,则通知移除监听器
      if (hasRemovalListener()) {
        if (expired) {
          notifyRemoval(key, oldValue, RemovalCause.EXPIRED);
        } else if (oldValue == null) {
          notifyRemoval(key, /* oldValue */ null, RemovalCause.COLLECTED);
        } else if (mayUpdate && (value != oldValue)) {
          notifyRemoval(key, oldValue, RemovalCause.REPLACED);
        }
      }
      // 更新权重,判断是不是第一写入,如果是,调用afterWrite方法
      int weightedDifference = mayUpdate ? (newWeight - oldWeight) : 0;
      if ((oldValue == null) || (weightedDifference != 0) || expired) {
        afterWrite(new UpdateTask(prior, weightedDifference));
        // 判断 onlyIfAbsent 是否为 true,以及是否超过容忍度,如果超过容忍度,调用afterWrite方法
      } else if (!onlyIfAbsent && exceedsTolerance) {
        afterWrite(new UpdateTask(prior, weightedDifference));
      } else {
        if (mayUpdate) {
          setWriteTime(prior, now);
        }
        //执行 afterRead 方法
        afterRead(prior, now, /* recordHit */ false);
      }

      return expired ? null : oldValue;
    }
  }

案例中通过 cache.put(k,v)调用方法,走到这个方法中,因为是第一次尝试储存key和value,所以代码中声明的 node = null,获取的prior = nullif (prior == null),创建新节点,设置创建后过期时间。notifyWriter=truehasWriter=false,执行else中方法

复制代码
          prior = data.putIfAbsent(node.getKeyReference(), node);
          if (prior == null) {
            afterWrite(new AddTask(node, newWeight));
            return null;
          } else if (onlyIfAbsent) {
            // An optimistic fast path to avoid unnecessary locking
            V currentValue = prior.getValue();
            if ((currentValue != null) && !hasExpired(prior, now)) {
              if (!isComputingAsync(prior)) {
                tryExpireAfterRead(prior, key, currentValue, expiry(), now);
                setAccessTime(prior, now);
              }
              afterRead(prior, now, /* recordHit */ false);
              return currentValue;
            }
          }

putIfAbsent 方法:由于data中不存在我们的key,value,返回 null,调用 afterWrite() 方法,将任务放入writeBuffer中,调用scheduleAfterWrite()方法

复制代码
  void afterWrite(Runnable task) {
    for (int i = 0; i < WRITE_BUFFER_RETRIES; i++) {
      if (writeBuffer.offer(task)) {
        scheduleAfterWrite();
        return;
      }
      scheduleDrainBuffers();
    }

scheduleAfterWrite()方法:

复制代码
  void scheduleAfterWrite() {
    for (;;) {
      switch (drainStatus()) {
        case IDLE:
          casDrainStatus(IDLE, REQUIRED);
          scheduleDrainBuffers();
          return;
        case REQUIRED:
          scheduleDrainBuffers();
          return;
        case PROCESSING_TO_IDLE:
          if (casDrainStatus(PROCESSING_TO_IDLE, PROCESSING_TO_REQUIRED)) {
            return;
          }
          continue;
        case PROCESSING_TO_REQUIRED:
          return;
        default:
          throw new IllegalStateException();
      }
    }
  }

看到这我其实是有点蒙了,因为笔者的异步编程基础薄弱,只看方法名字做一个不负责任的猜想,写入后安排异步任务,条件符合执行清理计划,会继续调用 scheduleDrainBuffers() 方法

scheduleDrainBuffers() 方法:

复制代码
void scheduleDrainBuffers() {
    if (drainStatus() >= PROCESSING_TO_IDLE) {
      return;
    }
    if (evictionLock.tryLock()) {
      try {
        int drainStatus = drainStatus();
        if (drainStatus >= PROCESSING_TO_IDLE) {
          return;
        }
        lazySetDrainStatus(PROCESSING_TO_IDLE);
        executor.execute(drainBuffersTask);
      } catch (Throwable t) {
        logger.log(Level.WARNING, "Exception thrown when submitting maintenance task", t);
        maintenance(/* ignored */ null);
      } finally {
        evictionLock.unlock();
      }
    }
  }

drainStatus() 就是返回这条件的值,如果大于等于 PROCESSING_TO_IDLE 就直接返回,否则执行 tryLock() 方法,如果成功,则执行 executor.execute(drainBuffersTask); 方法,否则执行 maintenance() 方法,这个方法就是执行清理任务的方法。

传进来的drainBuffersTask是一个PerformCleanupTask,这个类实现了Runnable接口,重写了run()方法,这个方法就是执行清理任务的方法。

复制代码
    @Override
    public void run() {
      BoundedLocalCache<?, ?> cache = reference.get();
      if (cache != null) {
        cache.performCleanUp(/* ignored */ null);
      }
    }

继续看performCleanUp()方法:

复制代码
  void performCleanUp(@Nullable Runnable task) {
    evictionLock.lock();
    try {
      maintenance(task);
    } finally {
      evictionLock.unlock();
    }
    if ((drainStatus() == REQUIRED) && (executor == ForkJoinPool.commonPool())) {
      scheduleDrainBuffers();
    }
  }

可以看到,这里也是调用了maintenance()方法,然后判断drainStatus()是否等于REQUIRED,如果等于,则调用scheduleDrainBuffers()方法。

复制代码
@GuardedBy("evictionLock")
  void maintenance(@Nullable Runnable task) {
    lazySetDrainStatus(PROCESSING_TO_IDLE);

    try {
      drainReadBuffer();

      drainWriteBuffer();
      if (task != null) {
        task.run();
      }

      drainKeyReferences();
      drainValueReferences();

      expireEntries();
      evictEntries();

      climb();
    } finally {
      if ((drainStatus() != PROCESSING_TO_IDLE) || !casDrainStatus(PROCESSING_TO_IDLE, IDLE)) {
        lazySetDrainStatus(REQUIRED);
      }
    }
  }

maintenance() 是实际的清理方法,它首先将drainStatus()设置为PROCESSING_TO_IDLE,然后调用drainReadBuffer()drainWriteBuffer()drainKeyReferences()drainValueReferences()expireEntries()evictEntries()climb()等方法,清理读写缓冲区、过期条目、驱逐条目等。

到这里,afterWrite()基本就执行完了,写入一次(key,value),都会去判断是否需要清理,如果需要清理,就异步调用maintenance()方法进行清理。

如果是给已经存在的key设置值,put方法执行到最后会调用 afterRead()方法

复制代码
  void afterRead(Node<K, V> node, long now, boolean recordHit) {
    if (recordHit) {
      statsCounter().recordHits(1);
    }

    boolean delayable = skipReadBuffer() || (readBuffer.offer(node) != Buffer.FULL);
    if (shouldDrainBuffers(delayable)) {
      scheduleDrainBuffers();
    }
    refreshIfNeeded(node, now);
  }

afterRead()方法会记录命中次数,然后判断是否需要延迟写入缓冲区,如果需要延迟写入缓冲区,则将节点放入读取缓冲区,如果读取缓冲区已满,则调用scheduleDrainBuffers()方法异步清理缓冲区,最后调用refreshIfNeeded()方法异步刷新节点。

refreshIfNeeded()方法会根据节点的过期时间、访问时间、更新时间等判断是否需要刷新节点,如果需要刷新节点,则调用refresh()方法刷新节点。

本例中没有设置过期时间,直接返回。

总结

本文算是比较详细的把put()方法执行流程分析了一遍,通过分析put()方法,我们可以了解到Caffeine缓存的基本原理,以及如何使用Caffeine缓存,学习如何自己实现一个本地缓存的 put()方法,怎样执行一个异步的清理任务,怎样判断是否需要清理,怎样异步刷新节点等等。

笔者也是一个小菜鸟,刚开始看一些源码,可能有些地方理解的不对,欢迎指正,谢谢!

希望本文对你有所帮助,如果有任何问题,欢迎在评论区留言讨论。

相关推荐
张张张31215 分钟前
4.2学习总结 Java:list系列集合
java·学习
KATA~18 分钟前
解决MyBatis-Plus枚举映射错误:No enum constant问题
java·数据库·mybatis
xyliiiiiL34 分钟前
一文总结常见项目排查
java·服务器·数据库
shaoing36 分钟前
MySQL 错误 报错:Table ‘performance_schema.session_variables’ Doesn’t Exist
java·开发语言·数据库
腥臭腐朽的日子熠熠生辉1 小时前
解决maven失效问题(现象:maven中只有jdk的工具包,没有springboot的包)
java·spring boot·maven
ejinxian1 小时前
Spring AI Alibaba 快速开发生成式 Java AI 应用
java·人工智能·spring
杉之2 小时前
SpringBlade 数据库字段的自动填充
java·笔记·学习·spring·tomcat
圈圈编码2 小时前
Spring Task 定时任务
java·前端·spring
俏布斯2 小时前
算法日常记录
java·算法·leetcode
27669582922 小时前
美团民宿 mtgsig 小程序 mtgsig1.2 分析
java·python·小程序·美团·mtgsig·mtgsig1.2·美团民宿