什么是二阶泰勒展开式

二阶泰勒展开式是一种用多项式近似函数的方法,通过在某一点展开该函数,将其用多项式的形式表示。泰勒展开可以用来近似连续函数,特别是在优化问题中,经常使用泰勒展开来近似目标函数,以便找到最优解。

一般形式

假设函数 f ( x ) f(x) f(x) 在点 x = a x = a x=a 附近具有连续的导数,那么泰勒展开式在 x = a x = a x=a 附近展开时,可以用以下形式来近似表示:

f ( x ) ≈ f ( a ) + f ′ ( a ) ( x − a ) + f ′ ′ ( a ) 2 ( x − a ) 2 + ⋯ + f ( n ) ( a ) n ! ( x − a ) n f(x) \approx f(a) + f'(a) (x - a) + \frac{f''(a)}{2} (x - a)^2 + \cdots + \frac{f^{(n)}(a)}{n!} (x - a)^n f(x)≈f(a)+f′(a)(x−a)+2f′′(a)(x−a)2+⋯+n!f(n)(a)(x−a)n

其中:

  • f ( a ) f(a) f(a) 是函数在点 a a a 处的值。
  • f ′ ( a ) f'(a) f′(a) 是函数在 a a a 点的导数。
  • f ′ ′ ( a ) f''(a) f′′(a) 是函数在 a a a 点的二阶导数。
  • n ! n! n! 是 n n n 的阶乘,用于归一化每项。

二阶泰勒展开式

如果仅取泰勒展开式的前两项,即截断到二阶导数部分,得到的就是二阶泰勒展开式,如下所示:

f ( x ) ≈ f ( a ) + f ′ ( a ) ( x − a ) + f ′ ′ ( a ) 2 ( x − a ) 2 f(x) \approx f(a) + f'(a) (x - a) + \frac{f''(a)}{2} (x - a)^2 f(x)≈f(a)+f′(a)(x−a)+2f′′(a)(x−a)2

其中:

  • 第一项 f ( a ) f(a) f(a) 是在 a a a 点处的函数值。
  • 第二项 f ′ ( a ) ( x − a ) f'(a)(x - a) f′(a)(x−a) 是一阶导数项,表示该点处的切线斜率。
  • 第三项 f ′ ′ ( a ) 2 ( x − a ) 2 \frac{f''(a)}{2} (x - a)^2 2f′′(a)(x−a)2 是二阶导数项,反映了该点附近的曲率。

二阶泰勒展开的应用

在机器学习和优化中,二阶泰勒展开常用于:

  1. 目标函数近似:在优化问题中,目标函数可以通过二阶泰勒展开进行近似,从而使用二次优化方法。
  2. XGBoost 损失函数近似:XGBoost 中的目标函数会通过二阶泰勒展开进行近似,将损失函数表达成包含一阶和二阶导数的形式,从而可以更方便地构建决策树。

示例

假设我们要在点 x = a x = a x=a 附近展开 f ( x ) = e x f(x) = e^x f(x)=ex:

  1. 函数在 a a a 处的值为 f ( a ) = e a f(a) = e^a f(a)=ea。
  2. 一阶导数为 f ′ ( x ) = e x f'(x) = e^x f′(x)=ex,所以 f ′ ( a ) = e a f'(a) = e^a f′(a)=ea。
  3. 二阶导数为 f ′ ′ ( x ) = e x f''(x) = e^x f′′(x)=ex,所以 f ′ ′ ( a ) = e a f''(a) = e^a f′′(a)=ea。

因此,二阶泰勒展开式为:
f ( x ) ≈ e a + e a ( x − a ) + e a 2 ( x − a ) 2 f(x) \approx e^a + e^a (x - a) + \frac{e^a}{2} (x - a)^2 f(x)≈ea+ea(x−a)+2ea(x−a)2

总结

二阶泰勒展开式是用函数在某点的值、一阶导数和二阶导数来近似该函数的一种方法。它能够反映函数在这一点的局部特性,并且常用于优化和机器学习中的函数近似。

相关推荐
Wilber的技术分享1 小时前
【机器学习实战笔记 14】集成学习:XGBoost算法(一) 原理简介与快速应用
人工智能·笔记·算法·随机森林·机器学习·集成学习·xgboost
19891 小时前
【零基础学AI】第26讲:循环神经网络(RNN)与LSTM - 文本生成
人工智能·python·rnn·神经网络·机器学习·tensorflow·lstm
JoernLee2 小时前
机器学习算法:支持向量机SVM
人工智能·算法·机器学习
IT古董10 小时前
【第二章:机器学习与神经网络概述】04.回归算法理论与实践 -(4)模型评价与调整(Model Evaluation & Tuning)
神经网络·机器学习·回归
蓝婷儿14 小时前
Python 机器学习核心入门与实战进阶 Day 3 - 决策树 & 随机森林模型实战
人工智能·python·机器学习
大千AI助手14 小时前
PageRank:互联网的马尔可夫链平衡态
人工智能·机器学习·贝叶斯·mc·pagerank·条件概率·马尔科夫链
我就是全世界15 小时前
TensorRT-LLM:大模型推理加速的核心技术与实践优势
人工智能·机器学习·性能优化·大模型·tensorrt-llm
.30-06Springfield15 小时前
决策树(Decision tree)算法详解(ID3、C4.5、CART)
人工智能·python·算法·决策树·机器学习
acstdm21 小时前
DAY 48 CBAM注意力
人工智能·深度学习·机器学习
摸爬滚打李上进1 天前
重生学AI第十六集:线性层nn.Linear
人工智能·pytorch·python·神经网络·机器学习