什么是二阶泰勒展开式

二阶泰勒展开式是一种用多项式近似函数的方法,通过在某一点展开该函数,将其用多项式的形式表示。泰勒展开可以用来近似连续函数,特别是在优化问题中,经常使用泰勒展开来近似目标函数,以便找到最优解。

一般形式

假设函数 f ( x ) f(x) f(x) 在点 x = a x = a x=a 附近具有连续的导数,那么泰勒展开式在 x = a x = a x=a 附近展开时,可以用以下形式来近似表示:

f ( x ) ≈ f ( a ) + f ′ ( a ) ( x − a ) + f ′ ′ ( a ) 2 ( x − a ) 2 + ⋯ + f ( n ) ( a ) n ! ( x − a ) n f(x) \approx f(a) + f'(a) (x - a) + \frac{f''(a)}{2} (x - a)^2 + \cdots + \frac{f^{(n)}(a)}{n!} (x - a)^n f(x)≈f(a)+f′(a)(x−a)+2f′′(a)(x−a)2+⋯+n!f(n)(a)(x−a)n

其中:

  • f ( a ) f(a) f(a) 是函数在点 a a a 处的值。
  • f ′ ( a ) f'(a) f′(a) 是函数在 a a a 点的导数。
  • f ′ ′ ( a ) f''(a) f′′(a) 是函数在 a a a 点的二阶导数。
  • n ! n! n! 是 n n n 的阶乘,用于归一化每项。

二阶泰勒展开式

如果仅取泰勒展开式的前两项,即截断到二阶导数部分,得到的就是二阶泰勒展开式,如下所示:

f ( x ) ≈ f ( a ) + f ′ ( a ) ( x − a ) + f ′ ′ ( a ) 2 ( x − a ) 2 f(x) \approx f(a) + f'(a) (x - a) + \frac{f''(a)}{2} (x - a)^2 f(x)≈f(a)+f′(a)(x−a)+2f′′(a)(x−a)2

其中:

  • 第一项 f ( a ) f(a) f(a) 是在 a a a 点处的函数值。
  • 第二项 f ′ ( a ) ( x − a ) f'(a)(x - a) f′(a)(x−a) 是一阶导数项,表示该点处的切线斜率。
  • 第三项 f ′ ′ ( a ) 2 ( x − a ) 2 \frac{f''(a)}{2} (x - a)^2 2f′′(a)(x−a)2 是二阶导数项,反映了该点附近的曲率。

二阶泰勒展开的应用

在机器学习和优化中,二阶泰勒展开常用于:

  1. 目标函数近似:在优化问题中,目标函数可以通过二阶泰勒展开进行近似,从而使用二次优化方法。
  2. XGBoost 损失函数近似:XGBoost 中的目标函数会通过二阶泰勒展开进行近似,将损失函数表达成包含一阶和二阶导数的形式,从而可以更方便地构建决策树。

示例

假设我们要在点 x = a x = a x=a 附近展开 f ( x ) = e x f(x) = e^x f(x)=ex:

  1. 函数在 a a a 处的值为 f ( a ) = e a f(a) = e^a f(a)=ea。
  2. 一阶导数为 f ′ ( x ) = e x f'(x) = e^x f′(x)=ex,所以 f ′ ( a ) = e a f'(a) = e^a f′(a)=ea。
  3. 二阶导数为 f ′ ′ ( x ) = e x f''(x) = e^x f′′(x)=ex,所以 f ′ ′ ( a ) = e a f''(a) = e^a f′′(a)=ea。

因此,二阶泰勒展开式为:
f ( x ) ≈ e a + e a ( x − a ) + e a 2 ( x − a ) 2 f(x) \approx e^a + e^a (x - a) + \frac{e^a}{2} (x - a)^2 f(x)≈ea+ea(x−a)+2ea(x−a)2

总结

二阶泰勒展开式是用函数在某点的值、一阶导数和二阶导数来近似该函数的一种方法。它能够反映函数在这一点的局部特性,并且常用于优化和机器学习中的函数近似。

相关推荐
koo3641 小时前
李宏毅机器学习笔记21-26周汇总
人工智能·笔记·机器学习
Blossom.1183 小时前
把AI“撒”进农田:基于极值量化与状态机的1KB边缘灌溉决策树
人工智能·python·深度学习·算法·目标检测·决策树·机器学习
救救孩子把4 小时前
18-机器学习与大模型开发数学教程-第1章 1-10 本章总结与习题
人工智能·数学·机器学习
救救孩子把4 小时前
17-机器学习与大模型开发数学教程-第1章 1-9 凸函数与凸优化基础
人工智能·数学·机器学习
明月照山海-4 小时前
机器学习周报十八
人工智能·机器学习
敢敢のwings5 小时前
VLA: 从具身智能到自动驾驶的关键桥梁
人工智能·机器学习·自动驾驶
zenRRan5 小时前
用中等难度prompt做高效post training
人工智能·深度学习·机器学习·计算机视觉·prompt
Mr.看海6 小时前
机器学习鼻祖级算法——使用SVM实现多分类及Python实现
算法·机器学习·支持向量机
minhuan9 小时前
构建AI智能体:六十八、集成学习:从三个臭皮匠到AI集体智慧的深度解析
人工智能·机器学习·adaboost·集成学习·bagging
Cathy Bryant9 小时前
大模型推理(九):采样温度
笔记·神经网络·机器学习·数学建模·transformer