使用pycharm调试程序——完全显示张量的数值

我在使用PyCharm调试程序时,发现有些张量因为shape过大(数据量太多),导致该张量中的数值无法完全显示。下面就简单介绍怎样完全显示张量中的数值。

  1. 假设某个张量 inp_voxel 的 shape 为 torch.Size([5, 128, 128]),如下图所示。
  1. 首先我们需要选中张量 inp_voxel ,然后单击鼠标右键 会出现如下图所示的条目,接着鼠标左键单击 Evaluate Expression
  1. 在弹出的对话框 Expression 处删除原有的内容,接着输入 np.array(inp_voxel.data.cpu()),然后点击对话框中的 Evaluate
  1. 在弹出的对话框中点击 ...View as Array 就可以完全显示张量 inp_voxel 中的数值了。
  1. 张量 inp_voxel 的 shape 为 torch.Size([5, 128, 128]) ,即该张量由 5 个大小为 128×128 的矩阵组成。通过上面的代码 np.array(inp_voxel.data.cpu())只能显示第 1 个大小 128×128 的矩阵。通俗地讲,可以把张量 inp_voxel 看成由 5 层 大小为128×128 的矩阵组成,而代码 np.array(inp_voxel.data.cpu())只显示第 1 层矩阵中的数值,如下图中的 __py_debug_temp_var_2017385755[0] 所示。([0]就表示第一层矩阵
  1. 如果我们想要显示第 4 层矩阵中的数值,可以在 Expression 处输入 np.array(inp_voxel[3].data.cpu()) ,然后点击 Evaluate...View as Array 就可以完全显示张量 inp_voxel 第 4 层矩阵中的数值了。其实这里的 inp_voxel[3] 就是通过索引操作来获取张量 inp_voxel 第 4 层矩阵中的数据,接着转为numpy数组。
  1. 扩展:我觉得上面操作的核心思想:就是将张量(tensor)转为numpy数组(ndarray)来进行完全显示 。其实,我们不一定非得在 Expression 处输入表达式 np.array(inp_voxel.data.cpu()),我们还可以输入表达式 inp_voxel.numpy()来进行转换,然后点击 Evaluate 即可。只要用合适的正确地语法将张量(tensor)转为numpy数组(ndarray)即可!!!!!!!

参考:
pycharm中evaluate expression的用法
个人笔记(4)PyCharm在进行debug时遇到张量显示不全、不方便查看数值的问题

相关推荐
hummhumm16 分钟前
第 25 章 - Golang 项目结构
java·开发语言·前端·后端·python·elasticsearch·golang
杜小满21 分钟前
周志华深度森林deep forest(deep-forest)最新可安装教程,仅需在pycharm中完成,超简单安装教程
python·随机森林·pycharm·集成学习
PigeonGuan29 分钟前
【jupyter】linux服务器怎么使用jupyter
linux·ide·jupyter
databook1 小时前
『玩转Streamlit』--布局与容器组件
python·机器学习·数据分析
小狮子安度因1 小时前
PyQt的安装和再PyCharm中的配置
ide·pycharm·pyqt
nuclear20112 小时前
使用Python 在Excel中创建和取消数据分组 - 详解
python·excel数据分组·创建excel分组·excel分类汇总·excel嵌套分组·excel大纲级别·取消excel分组
Lucky小小吴2 小时前
有关django、python版本、sqlite3版本冲突问题
python·django·sqlite
GIS 数据栈3 小时前
每日一书 《基于ArcGIS的Python编程秘笈》
开发语言·python·arcgis
爱分享的码瑞哥3 小时前
Python爬虫中的IP封禁问题及其解决方案
爬虫·python·tcp/ip
VernonJsn4 小时前
visual studio 2005的MFC各种线程函数之间的调用关系
ide·mfc·visual studio