Llamaindex RAG 实践

任务要求1

基于 LlamaIndex 构建自己的 RAG 知识库,寻找一个问题 A 在使用 LlamaIndex 之前 浦语 API 不会回答,借助 LlamaIndex 后 浦语 API 具备回答 A 的能力

不使用 LlamaIndex RAG(仅API)

代码如下:

from openai import OpenAI

base_url = "https://internlm-chat.intern-ai.org.cn/puyu/api/v1/"
api_key = "your-key"
model="internlm2.5-latest"

# base_url = "https://api.siliconflow.cn/v1"
# api_key = "your-key"
# model="internlm/internlm2_5-7b-chat"

client = OpenAI(
    api_key=api_key , 
    base_url=base_url,
)

chat_rsp = client.chat.completions.create(
    model=model,
    messages=[{"role": "user", "content": "xtuner是什么?"}],
)

for choice in chat_rsp.choices:
    print(choice.message.content)

运行结果如下:

使用 LlamaIndex RAG

代码如下:

import os 
os.environ['NLTK_DATA'] = '/root/nltk_data'

from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from llama_index.core.settings import Settings
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.legacy.callbacks import CallbackManager
from llama_index.llms.openai_like import OpenAILike


# Create an instance of CallbackManager
callback_manager = CallbackManager()

api_base_url =  "https://internlm-chat.intern-ai.org.cn/puyu/api/v1/"
model = "internlm2.5-latest"
api_key = "your-key"

# api_base_url =  "https://api.siliconflow.cn/v1"
# model = "internlm/internlm2_5-7b-chat"
# api_key = "your-key"



llm =OpenAILike(model=model, api_base=api_base_url, api_key=api_key, is_chat_model=True,callback_manager=callback_manager)


#初始化一个HuggingFaceEmbedding对象,用于将文本转换为向量表示
embed_model = HuggingFaceEmbedding(
#指定了一个预训练的sentence-transformer模型的路径
    model_name="/root/model/sentence-transformer"
)
#将创建的嵌入模型赋值给全局设置的embed_model属性,
#这样在后续的索引构建过程中就会使用这个模型。
Settings.embed_model = embed_model

#初始化llm
Settings.llm = llm

#从指定目录读取所有文档,并加载数据到内存中
documents = SimpleDirectoryReader("/root/llamaindex_demo/data").load_data()
#创建一个VectorStoreIndex,并使用之前加载的文档来构建索引。
# 此索引将文档转换为向量,并存储这些向量以便于快速检索。
index = VectorStoreIndex.from_documents(documents)
# 创建一个查询引擎,这个引擎可以接收查询并返回相关文档的响应。
query_engine = index.as_query_engine()
response = query_engine.query("xtuner是什么?")

print(response)

运行结果如下:

任务要求2

基于 LlamaIndex 构建自己的 RAG 知识库,寻找一个问题 A 在使用 LlamaIndex 之前 InternLM2-Chat-1.8B 模型不会回答,借助 LlamaIndex 后 InternLM2-Chat-1.8B 模型具备回答 A 的能力

仅使用 InternLM2-Chat-1.8B 模型

代码如下:

from llama_index.llms.huggingface import HuggingFaceLLM
from llama_index.core.llms import ChatMessage
llm = HuggingFaceLLM(
    model_name="/root/model/internlm2-chat-1_8b",
    tokenizer_name="/root/model/internlm2-chat-1_8b",
    model_kwargs={"trust_remote_code":True},
    tokenizer_kwargs={"trust_remote_code":True}
)

rsp = llm.chat(messages=[ChatMessage(content="xtuner是什么?")])
print(rsp)

运行结果如下:

使用LlamaIndex RAG后的InternLM2-Chat-1.8B 模型

代码如下:

from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settings

from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.llms.huggingface import HuggingFaceLLM

#初始化一个HuggingFaceEmbedding对象,用于将文本转换为向量表示
embed_model = HuggingFaceEmbedding(
#指定了一个预训练的sentence-transformer模型的路径
    model_name="/root/model/sentence-transformer"
)
#将创建的嵌入模型赋值给全局设置的embed_model属性,
#这样在后续的索引构建过程中就会使用这个模型。
Settings.embed_model = embed_model

llm = HuggingFaceLLM(
    model_name="/root/model/internlm2-chat-1_8b",
    tokenizer_name="/root/model/internlm2-chat-1_8b",
    model_kwargs={"trust_remote_code":True},
    tokenizer_kwargs={"trust_remote_code":True}
)
#设置全局的llm属性,这样在索引查询时会使用这个模型。
Settings.llm = llm

#从指定目录读取所有文档,并加载数据到内存中
documents = SimpleDirectoryReader("/root/llamaindex_demo/data").load_data()
#创建一个VectorStoreIndex,并使用之前加载的文档来构建索引。
# 此索引将文档转换为向量,并存储这些向量以便于快速检索。
index = VectorStoreIndex.from_documents(documents)
# 创建一个查询引擎,这个引擎可以接收查询并返回相关文档的响应。
query_engine = index.as_query_engine()
response = query_engine.query("xtuner是什么?")

print(response)

运行结果如下:

任务要求3

将 Streamlit+LlamaIndex+浦语API的 Space 部署到 Hugging Face

Streamlit+LlamaIndex+浦语API实现本地网页对话交互问答

代码如下:

import streamlit as st
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settings
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.llms.huggingface import HuggingFaceLLM

st.set_page_config(page_title="llama_index_demo", page_icon="🦜🔗")
st.title("llama_index_demo")

# 初始化模型
@st.cache_resource
def init_models():
    embed_model = HuggingFaceEmbedding(
        model_name="/root/model/sentence-transformer"
    )
    Settings.embed_model = embed_model

    llm = HuggingFaceLLM(
        model_name="/root/model/internlm2-chat-1_8b",
        tokenizer_name="/root/model/internlm2-chat-1_8b",
        model_kwargs={"trust_remote_code": True},
        tokenizer_kwargs={"trust_remote_code": True}
    )
    Settings.llm = llm

    documents = SimpleDirectoryReader("/root/llamaindex_demo/data").load_data()
    index = VectorStoreIndex.from_documents(documents)
    query_engine = index.as_query_engine()

    return query_engine

# 检查是否需要初始化模型
if 'query_engine' not in st.session_state:
    st.session_state['query_engine'] = init_models()

def greet2(question):
    response = st.session_state['query_engine'].query(question)
    return response


# Store LLM generated responses
if "messages" not in st.session_state.keys():
    st.session_state.messages = [{"role": "assistant", "content": "你好,我是你的助手,有什么我可以帮助你的吗?"}]

    # Display or clear chat messages
for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.write(message["content"])

def clear_chat_history():
    st.session_state.messages = [{"role": "assistant", "content": "你好,我是你的助手,有什么我可以帮助你的吗?"}]

st.sidebar.button('Clear Chat History', on_click=clear_chat_history)

# Function for generating LLaMA2 response
def generate_llama_index_response(prompt_input):
    return greet2(prompt_input)

# User-provided prompt
if prompt := st.chat_input():
    st.session_state.messages.append({"role": "user", "content": prompt})
    with st.chat_message("user"):
        st.write(prompt)

# Gegenerate_llama_index_response last message is not from assistant
if st.session_state.messages[-1]["role"] != "assistant":
    with st.chat_message("assistant"):
        with st.spinner("Thinking..."):
            response = generate_llama_index_response(prompt)
            placeholder = st.empty()
            placeholder.markdown(response)
    message = {"role": "assistant", "content": response}
    st.session_state.messages.append(message)

运行结果如下:

提交到HuggingFace中

相关推荐
AI原吾5 分钟前
探索Python的HTTP利器:Requests库的神秘面纱
python·requests
灰哥数据智能10 分钟前
DB-GPT系列(五):DB-GPT六大基础应用场景part2
数据库·人工智能·python·sql·gpt·abi
微学AI11 分钟前
MathGPT的原理介绍,在中小学数学教学的应用场景,以及代码样例实现
人工智能·python·大模型·mathgpt
小馒头学python11 分钟前
机器学习中的分类:决策树、随机森林及其应用
人工智能·python·决策树·随机森林·机器学习·分类
B站计算机毕业设计超人1 小时前
计算机毕业设计Python+Neo4j知识图谱医疗问答系统 大模型 机器学习 深度学习 人工智能 大数据毕业设计 Python爬虫 Python毕业设计
爬虫·python·深度学习·机器学习·知识图谱·课程设计·neo4j
机器懒得学习1 小时前
Python & PyQt5 实现 .his 文件批量转 Excel 工具
开发语言·python·excel
可靠百灵鸟1 小时前
Python 操作 Excel 表格从简单到高级用法
开发语言·python·excel
AI原吾1 小时前
探索MoviePy:Python视频编辑的瑞士军刀
开发语言·python·音视频·moviepy
想去看海9852 小时前
终端打开程序、为什么要用pycharm
ide·python·pycharm
摆烂仙君2 小时前
图像处理实验二(Image Understanding and Basic Processing)
python