如何保证kafka生产者数据可靠性

ack参数的设置:

0:生产者发送过来的数据,不需要等数据落盘应答

假如发送了Hello 和 World两个信息,Leader直接挂掉,数据就会丢失

生产者 ---> Kafka集群 一放进去就跑

数据可靠性分析:丢数

1:生产者发送过来的数据,Leader收到数据后应答

生产者把数据发送给了Leader,Leader保存成功,应答完毕,此时生产者就以为数据发送成功了,但是此时,Leader挂了,但是Follower 并没有同步数据过来,Follower此时变成了Leader, 此时的Leader就没有Hello这个数据了,数据丢失了。

-1(all):生产者发送过来的数据,Leader和ISR队列里面的所有节点收齐数据后应答。

Leader收到数据,所有Follower都开始同步数据, 但有一个Follower,因为某种故障,迟迟不能与Leader进行同步,那这个问题怎么解决呢?

解决方案:

Leader维护了一个动态的in-sync replica set(ISR),意为和 Leader保持同步的Follower+Leader集合(leader:0,isr:0,1,2)。

如果Follower长时间未向Leader发送通信请求或同步数据,则该Follower将被踢出ISR。该时间阈值由replica.lag.time.max.ms参数设定,默认30s。例如2超时,(leader:0, isr:0,1)。 这样就不用等长期联系不上或者已经故障的节点。

数据可靠性分析:

如果分区副本设置为1个(只有一个leader),或者ISR里应答的最小副本数量 ( min.insync.replicas 默认为1)设置为1,和ack=1的效果是一样的,仍然有丢数的风险(leader:0,isr:0)。

• 数据完全可靠条件 = ACK级别设置为-1 + 分区副本大于等于2 + ISR里应答的最小副本数量大于等于2

副本数是2,但是ISR中不一定有两个,因为会挂掉。

可靠性总结:

acks=0,生产者发送过来数据就不管了,可靠性差,效率高;

acks=1,生产者发送过来数据Leader应答,可靠性中等,效率中等;

acks=-1,生产者发送过来数据Leader和ISR队列里面所有Follwer应答,可靠性高,效率低;

在生产环境中,acks=0很少使用;acks=1,一般用于传输普通日志,允许丢个别数据;

acks=-1,一般用于传输和钱相关的数据,对可靠性要求比较高的场景。

相关推荐
小醉你真好1 小时前
Spring Boot + Kafka 全面实战案例
spring boot·kafka·linq
ajax_beijing4 小时前
hadoop的三副本数据冗余策略
大数据·hadoop·分布式
失散135 小时前
分布式专题——46 ElasticSearch高级查询语法Query DSL实战
java·分布式·elasticsearch·架构
沉默终止5 小时前
Kafka Queue: 如何严格控制消息数量
kafka
没有bug.的程序员5 小时前
分布式链路追踪:微服务可观测性的核心支柱
java·分布式·微服务·架构·wpf
C.R.xing5 小时前
Pyspark分布式访问NebulaGraph图数据库
数据库·分布式·python·pyspark·nebulagraph
AutoMQ6 小时前
重磅发布|AutoMQ v1.6.0 开源版:Kafka 成本直降 17 倍,原生支持 Strimzi 与 Iceberg
云原生·kafka
koping_wu15 小时前
【RabbitMQ】架构原理、消息丢失、重复消费、顺序消费、事务消息
分布式·架构·rabbitmq
吹晚风吧16 小时前
从0开始了解kafka《第二篇 kafka的安装、管理和配置》
kafka·kafka配置
Jabes.yang16 小时前
Java面试场景:从Spring Web到Kafka的音视频应用挑战
大数据·spring boot·kafka·spring security·java面试·spring webflux