如何保证kafka生产者数据可靠性

ack参数的设置:

0:生产者发送过来的数据,不需要等数据落盘应答

假如发送了Hello 和 World两个信息,Leader直接挂掉,数据就会丢失

生产者 ---> Kafka集群 一放进去就跑

数据可靠性分析:丢数

1:生产者发送过来的数据,Leader收到数据后应答

生产者把数据发送给了Leader,Leader保存成功,应答完毕,此时生产者就以为数据发送成功了,但是此时,Leader挂了,但是Follower 并没有同步数据过来,Follower此时变成了Leader, 此时的Leader就没有Hello这个数据了,数据丢失了。

-1(all):生产者发送过来的数据,Leader和ISR队列里面的所有节点收齐数据后应答。

Leader收到数据,所有Follower都开始同步数据, 但有一个Follower,因为某种故障,迟迟不能与Leader进行同步,那这个问题怎么解决呢?

解决方案:

Leader维护了一个动态的in-sync replica set(ISR),意为和 Leader保持同步的Follower+Leader集合(leader:0,isr:0,1,2)。

如果Follower长时间未向Leader发送通信请求或同步数据,则该Follower将被踢出ISR。该时间阈值由replica.lag.time.max.ms参数设定,默认30s。例如2超时,(leader:0, isr:0,1)。 这样就不用等长期联系不上或者已经故障的节点。

数据可靠性分析:

如果分区副本设置为1个(只有一个leader),或者ISR里应答的最小副本数量 ( min.insync.replicas 默认为1)设置为1,和ack=1的效果是一样的,仍然有丢数的风险(leader:0,isr:0)。

• 数据完全可靠条件 = ACK级别设置为-1 + 分区副本大于等于2 + ISR里应答的最小副本数量大于等于2

副本数是2,但是ISR中不一定有两个,因为会挂掉。

可靠性总结:

acks=0,生产者发送过来数据就不管了,可靠性差,效率高;

acks=1,生产者发送过来数据Leader应答,可靠性中等,效率中等;

acks=-1,生产者发送过来数据Leader和ISR队列里面所有Follwer应答,可靠性高,效率低;

在生产环境中,acks=0很少使用;acks=1,一般用于传输普通日志,允许丢个别数据;

acks=-1,一般用于传输和钱相关的数据,对可靠性要求比较高的场景。

相关推荐
腾讯云中间件5 小时前
Kafka 集群上云新突破:腾讯云 CKafka 联邦迁移方案
云原生·kafka·消息队列
跟着珅聪学java6 小时前
在电商系统中,如何确保库存扣减的原子性
分布式
JH30738 小时前
Redisson 看门狗机制:让分布式锁“活”下去的智能保镖
分布式
一点 内容9 小时前
深入理解分布式共识算法 Raft:从原理到实践
分布式·区块链·共识算法
8Qi89 小时前
分布式锁-redission
java·redis·分布式·redisson
10 小时前
鸿蒙——分布式数据库
数据库·分布式
jiayong2310 小时前
微服务架构与 Spring 生态完全指南
kafka·rabbitmq·rocketmq
Hui Baby10 小时前
分布式多阶段入参参数获取
分布式
阿拉斯攀登13 小时前
Spring Cloud Alibaba 生态中 RocketMQ 最佳实践
分布式·微服务·rocketmq·springcloud·cloudalibaba
无锡布里渊13 小时前
感温光纤 DTS 系统 vs 感温电缆 对比分析报告
分布式·实时监测·分布式光纤测温·线型感温火灾监测·感温电缆