如何保证kafka生产者数据可靠性

ack参数的设置:

0:生产者发送过来的数据,不需要等数据落盘应答

假如发送了Hello 和 World两个信息,Leader直接挂掉,数据就会丢失

生产者 ---> Kafka集群 一放进去就跑

数据可靠性分析:丢数

1:生产者发送过来的数据,Leader收到数据后应答

生产者把数据发送给了Leader,Leader保存成功,应答完毕,此时生产者就以为数据发送成功了,但是此时,Leader挂了,但是Follower 并没有同步数据过来,Follower此时变成了Leader, 此时的Leader就没有Hello这个数据了,数据丢失了。

-1(all):生产者发送过来的数据,Leader和ISR队列里面的所有节点收齐数据后应答。

Leader收到数据,所有Follower都开始同步数据, 但有一个Follower,因为某种故障,迟迟不能与Leader进行同步,那这个问题怎么解决呢?

解决方案:

Leader维护了一个动态的in-sync replica set(ISR),意为和 Leader保持同步的Follower+Leader集合(leader:0,isr:0,1,2)。

如果Follower长时间未向Leader发送通信请求或同步数据,则该Follower将被踢出ISR。该时间阈值由replica.lag.time.max.ms参数设定,默认30s。例如2超时,(leader:0, isr:0,1)。 这样就不用等长期联系不上或者已经故障的节点。

数据可靠性分析:

如果分区副本设置为1个(只有一个leader),或者ISR里应答的最小副本数量 ( min.insync.replicas 默认为1)设置为1,和ack=1的效果是一样的,仍然有丢数的风险(leader:0,isr:0)。

• 数据完全可靠条件 = ACK级别设置为-1 + 分区副本大于等于2 + ISR里应答的最小副本数量大于等于2

副本数是2,但是ISR中不一定有两个,因为会挂掉。

可靠性总结:

acks=0,生产者发送过来数据就不管了,可靠性差,效率高;

acks=1,生产者发送过来数据Leader应答,可靠性中等,效率中等;

acks=-1,生产者发送过来数据Leader和ISR队列里面所有Follwer应答,可靠性高,效率低;

在生产环境中,acks=0很少使用;acks=1,一般用于传输普通日志,允许丢个别数据;

acks=-1,一般用于传输和钱相关的数据,对可靠性要求比较高的场景。

相关推荐
qq_3181215915 分钟前
Java大厂面试故事:Spring Boot、微服务与AI场景深度解析
java·spring boot·redis·微服务·ai·kafka·spring security
indexsunny3 小时前
互联网大厂Java面试实战:微服务、Spring Boot与Kafka在电商场景中的应用
java·spring boot·微服务·面试·kafka·电商
yumgpkpm3 小时前
Cloudera CDH、CDP、Hadoop大数据+决策模型及其案例
大数据·hive·hadoop·分布式·spark·kafka·cloudera
IT大白4 小时前
4、Kafka原理-Consumer
分布式·kafka
独自破碎E5 小时前
怎么在RabbitMQ中配置消息的TTL?
分布式·rabbitmq
七夜zippoe5 小时前
缓存策略:从本地到分布式架构设计与Python实战
分布式·python·缓存·lfu·lru
num_killer6 小时前
小白的Spark初识(RDD)
大数据·分布式·spark
小北方城市网6 小时前
微服务架构设计实战指南:从拆分到落地,构建高可用分布式系统
java·运维·数据库·分布式·python·微服务
heartbeat..6 小时前
Spring 全局上下文实现指南:单机→异步→分布式
java·分布式·spring·context