如何保证kafka生产者数据可靠性

ack参数的设置:

0:生产者发送过来的数据,不需要等数据落盘应答

假如发送了Hello 和 World两个信息,Leader直接挂掉,数据就会丢失

生产者 ---> Kafka集群 一放进去就跑

数据可靠性分析:丢数

1:生产者发送过来的数据,Leader收到数据后应答

生产者把数据发送给了Leader,Leader保存成功,应答完毕,此时生产者就以为数据发送成功了,但是此时,Leader挂了,但是Follower 并没有同步数据过来,Follower此时变成了Leader, 此时的Leader就没有Hello这个数据了,数据丢失了。

-1(all):生产者发送过来的数据,Leader和ISR队列里面的所有节点收齐数据后应答。

Leader收到数据,所有Follower都开始同步数据, 但有一个Follower,因为某种故障,迟迟不能与Leader进行同步,那这个问题怎么解决呢?

解决方案:

Leader维护了一个动态的in-sync replica set(ISR),意为和 Leader保持同步的Follower+Leader集合(leader:0,isr:0,1,2)。

如果Follower长时间未向Leader发送通信请求或同步数据,则该Follower将被踢出ISR。该时间阈值由replica.lag.time.max.ms参数设定,默认30s。例如2超时,(leader:0, isr:0,1)。 这样就不用等长期联系不上或者已经故障的节点。

数据可靠性分析:

如果分区副本设置为1个(只有一个leader),或者ISR里应答的最小副本数量 ( min.insync.replicas 默认为1)设置为1,和ack=1的效果是一样的,仍然有丢数的风险(leader:0,isr:0)。

• 数据完全可靠条件 = ACK级别设置为-1 + 分区副本大于等于2 + ISR里应答的最小副本数量大于等于2

副本数是2,但是ISR中不一定有两个,因为会挂掉。

可靠性总结:

acks=0,生产者发送过来数据就不管了,可靠性差,效率高;

acks=1,生产者发送过来数据Leader应答,可靠性中等,效率中等;

acks=-1,生产者发送过来数据Leader和ISR队列里面所有Follwer应答,可靠性高,效率低;

在生产环境中,acks=0很少使用;acks=1,一般用于传输普通日志,允许丢个别数据;

acks=-1,一般用于传输和钱相关的数据,对可靠性要求比较高的场景。

相关推荐
踩坑小念3 小时前
秒杀场景下如何处理redis扣除状态不一致问题
数据库·redis·分布式·缓存·秒杀
yumgpkpm5 小时前
2026软件:白嫖,开源,外包,招标,晚进场(2025年下半年),数科,AI...中国的企业软件产业出路
大数据·人工智能·hadoop·算法·kafka·开源·cloudera
笃行客从不躺平7 小时前
Token 复习
java·分布式·spring cloud
u0104058369 小时前
分布式淘客系统的配置中心设计:Nacos在多环境配置管理的应用
分布式
迎仔10 小时前
01-Hadoop 核心三剑客通俗指南:从“单机搬砖”到“包工队”
大数据·hadoop·分布式
ALex_zry10 小时前
分布式缓存与微服务架构的集成
分布式·缓存·架构
ALex_zry11 小时前
分布式缓存安全最佳实践
分布式·安全·缓存
陌上丨14 小时前
分布式锁的特性是什么?如何实现分布式锁?
分布式
yangSnowy14 小时前
MySQL 分布式锁实现方案
数据库·分布式·mysql
ALex_zry14 小时前
分布式缓存性能优化策略
分布式·缓存·性能优化