<span style="background-color:#f8f8f8"><span style="color:#333333"><span style="color:#aa5500">#########################伪代码###########################</span>
<span style="color:#aa5500"># 导入必要的库</span>
Import libraries
<span style="color:#aa5500"># 定义函数</span>
Function discretize(theta):
<span style="color:#aa5500"># 初始化二进制矩阵 YT</span>
Initialize YT as a zero matrix with the same shape as theta
For each row i <span style="color:#770088">in</span> theta:
Find the maximum value <span style="color:#770088">in</span> row i
For each column j <span style="color:#770088">in</span> row i:
If the difference between the max value and theta[i][j] is less than <span style="color:#116644">1</span>/K:
Set YT[i][j] to <span style="color:#116644">1</span>
Else:
Set YT[i][j] to <span style="color:#116644">0</span>
Return YT
Function convert_to_one_hot(data):
<span style="color:#aa5500"># 获取唯一值和类别数</span>
Find unique values <span style="color:#770088">in</span> data
Initialize one_hot_encoded as a zero matrix
For each value <span style="color:#770088">in</span> data:
Find the index of the value <span style="color:#770088">in</span> unique values
Set the corresponding position <span style="color:#770088">in</span> one_hot_encoded to <span style="color:#116644">1</span>
Return one_hot_encoded
Function lda(labels, n):
<span style="color:#aa5500"># 进行潜在狄利克雷分配(LDA)</span>
Initialize LDA model with n components
Fit and transform labels using LDA model
Discretize the transformed data
Return the discretized data
Function metric_cal(test, pred):
<span style="color:#aa5500"># 计算并打印评估指标</span>
Calculate accuracy, precision, recall, F1 score, and AUC
Print the calculated metrics
<span style="color:#aa5500"># 主程序</span>
If __name__ <span style="color:#981a1a">==</span> <span style="color:#aa1111">"__main__"</span>:
<span style="color:#aa5500"># 加载数据</span>
Load data from Excel file
<span style="color:#aa5500"># 定义标签列和特征</span>
Define label_cols and features
Convert features and labels to NumPy arrays
<span style="color:#aa5500"># 设置主题数</span>
Set n to <span style="color:#116644">6</span>
<span style="color:#aa5500"># 对标签进行LDA</span>
Call lda <span style="color:#770088">function</span> to <span style="color:#3300aa">get</span> Y_T
<span style="color:#aa5500"># 将特征与离散化的标签组合</span>
Concatenate features and Y_T to <span style="color:#3300aa">get</span> XYT
<span style="color:#aa5500"># 划分训练集和测试集</span>
Split XYT and labels into X_train, X_test, y_train, y_test
<span style="color:#aa5500"># 初始化多标签分类器</span>
Initialize MT_classifier as RankSVM
<span style="color:#aa5500"># 从训练集和测试集中提取主题</span>
Extract yt_train and yt_test from X_train and X_test
Remove last n columns from X_train and X_test
<span style="color:#aa5500"># 训练多标签分类器</span>
Fit MT_classifier using X_train and yt_train
<span style="color:#aa5500"># 预测测试集的主题</span>
Predict yt_proba and yt_pred using MT_classifier on X_test
Convert yt_pred to integer
<span style="color:#aa5500"># 使用预测的主题扩展训练集和测试集</span>
Concatenate X_train with yt_train to <span style="color:#3300aa">get</span> X_train_aug
Concatenate X_test with yt_pred to <span style="color:#3300aa">get</span> X_test_aug
<span style="color:#aa5500"># 初始化并训练二进制相关性分类器</span>
Initialize base_classifier as MLPClassifier
Initialize clf as BinaryRelevance with base_classifier
Fit clf using X_train_aug and y_train
<span style="color:#aa5500"># 预测测试集的标签</span>
Predict y_pred and y_score using clf on X_test_aug
<span style="color:#aa5500"># 计算评估指标</span>
Calculate hamming loss, ranking loss, coverage error, and average precision
Print calculated metrics
<span style="color:#aa5500"># 对每个标签计算并打印评估指标</span>
For each label i:
Extract test and pred <span style="color:#770088">for</span> label i
Call metric_cal <span style="color:#770088">function</span> to calculate and print metrics
Print separator
Print final separator</span></span>