Python训练营-Day42

import torch

import torch.nn as nn

import torch.optim as optim

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import MinMaxScaler

import time

import matplotlib.pyplot as plt

from tqdm import tqdm

import pandas as pd

data = pd.read_csv(r'data.csv')

list_discrete = data.select_dtypes(include=['object']).columns.tolist()

home_ownership_mapping = {'Own Home': 1, 'Rent': 2,

'Have Mortgage': 3, 'Home Mortgage': 4}

data['Home Ownership'] = data['Home Ownership'].map(home_ownership_mapping)

years_in_job_mapping = {'< 1 year': 1, '1 year': 2, '2 years': 3, '3 years': 4, '4 years': 5,

'5 years': 6, '6 years': 7, '7 years': 8, '8 years': 9, '9 years': 10, '10+ years': 11}

data['Years in current job'] = data['Years in current job'].map(

years_in_job_mapping)

data = pd.get_dummies(data, columns=['Purpose'])

data2 = pd.read_csv(r'data.csv')

list_new = []

for i in data.columns:

if i not in data2.columns:

list_new.append(i)

for i in list_new:

data[i] = data[i].astype(int)

term_mapping = {'Short Term': 0, 'Long Term': 1}

data['Term'] = data['Term'].map(term_mapping)

data.rename(columns={'Term': 'Long Term'}, inplace=True)

list_continuous = data.select_dtypes(

include=['int64', 'float64']).columns.tolist()

for i in list_continuous:

median_value = data[i].median()

data[i] = data[i].fillna(median_value)

X = data.drop(['Credit Default'], axis=1)

y = data['Credit Default']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')

print(f'使用设备: {device}\n')

scaler = MinMaxScaler()

X_train = scaler.fit_transform(X_train)

X_test = scaler.transform(X_test)

X_train = torch.FloatTensor(X_train).to(device)

y_train = torch.LongTensor(y_train.values).to(device)

X_test = torch.FloatTensor(X_test).to(device)

y_test = torch.LongTensor(y_test.values).to(device)

class MLP_Original(nn.Module):

def init(self):

super(MLP_Original, self).init()

self.fc1 = nn.Linear(31, 10)

self.relu = nn.ReLU()

self.fc2 = nn.Linear(10, 3)

def forward(self, x):

out = self.fc1(x)

out = self.relu(out)

out = self.fc2(out)

return out

class MLP_Larger(nn.Module):

def init(self):

super(MLP_Larger, self).init()

self.fc1 = nn.Linear(31, 20)

self.relu = nn.ReLU()

self.fc2 = nn.Linear(20, 10)

self.fc3 = nn.Linear(10, 3)

def forward(self, x):

out = self.fc1(x)

out = self.relu(out)

out = self.fc2(out)

out = self.relu(out)

out = self.fc3(out)

return out

class MLP_Smaller(nn.Module):

def init(self):

super(MLP_Smaller, self).init()

self.fc1 = nn.Linear(31, 5)

self.relu = nn.ReLU()

self.fc2 = nn.Linear(5, 3)

def forward(self, x):

out = self.fc1(x)

out = self.relu(out)

out = self.fc2(out)

return out

class MLP_Tanh(nn.Module):

def init(self):

super(MLP_Tanh, self).init()

self.fc1 = nn.Linear(31, 10)

self.act = nn.Tanh()

self.fc2 = nn.Linear(10, 3)

def forward(self, x):

out = self.fc1(x)

out = self.act(out)

out = self.fc2(out)

return out

def train_and_evaluate(model_class, optimizer_class, lr, num_epochs=20000):

model = model_class().to(device)

criterion = nn.CrossEntropyLoss()

optimizer = optimizer_class(model.parameters(), lr=lr)

losses = []

epochs = []

start_time = time.time()

with tqdm(total=num_epochs, desc=f'训练 {model_class.name}', unit='epoch') as pbar:

for epoch in range(num_epochs):

outputs = model(X_train)

loss = criterion(outputs, y_train)

optimizer.zero_grad()

loss.backward()

optimizer.step()

if (epoch + 1) % 200 == 0:

losses.append(loss.item())

epochs.append(epoch + 1)

pbar.set_postfix({'Loss': f'{loss.item():.4f}'})

if (epoch + 1) % 1000 == 0:

pbar.update(1000)

if pbar.n < num_epochs:

pbar.update(num_epochs - pbar.n)

time_all = time.time() - start_time

with torch.no_grad():

outputs = model(X_test)

_, predicted = torch.max(outputs.data, 1)

accuracy = (predicted == y_test).sum().item() / y_test.size(0)

print(f'{model_class.name} 训练时间: {time_all:.2f}秒, 测试准确率: {accuracy:.4f}\n')

return epochs, losses, accuracy

configs = [

(MLP_Original, optim.SGD, 0.01),

(MLP_Larger, optim.SGD, 0.01),

(MLP_Smaller, optim.SGD, 0.01),

(MLP_Tanh, optim.SGD, 0.01),

(MLP_Original, optim.Adam, 0.001),

(MLP_Original, optim.SGD, 0.1),

(MLP_Original, optim.SGD, 0.001)

]

plt.figure(figsize=(12, 8))

for config in configs:

epochs, losses, accuracy = train_and_evaluate(*config)

plt.plot(epochs, losses, label=f'{config[0].name} {config[1].name} lr={config[2]} (Acc:{accuracy:.2f})')

plt.xlabel('Epoch')

plt.ylabel('Loss')

plt.title('Training Loss Comparison with Different Hyperparameters')

plt.legend()

plt.grid(True)

plt.show()

相关推荐
烛阴4 小时前
简单入门Python装饰器
前端·python
好开心啊没烦恼4 小时前
Python 数据分析:numpy,说人话,说说数组维度。听故事学知识点怎么这么容易?
开发语言·人工智能·python·数据挖掘·数据分析·numpy
面朝大海,春不暖,花不开5 小时前
使用 Python 实现 ETL 流程:从文本文件提取到数据处理的全面指南
python·etl·原型模式
2301_805054566 小时前
Python训练营打卡Day59(2025.7.3)
开发语言·python
万千思绪6 小时前
【PyCharm 2025.1.2配置debug】
ide·python·pycharm
微风粼粼8 小时前
程序员在线接单
java·jvm·后端·python·eclipse·tomcat·dubbo
云天徽上8 小时前
【PaddleOCR】OCR表格识别数据集介绍,包含PubTabNet、好未来表格识别、WTW中文场景表格等数据,持续更新中......
python·ocr·文字识别·表格识别·paddleocr·pp-ocrv5
你怎么知道我是队长8 小时前
python-input内置函数
开发语言·python
叹一曲当时只道是寻常9 小时前
Python实现优雅的目录结构打印工具
python
hbwhmama9 小时前
python高级变量XIII
python