Python训练营-Day42

import torch

import torch.nn as nn

import torch.optim as optim

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import MinMaxScaler

import time

import matplotlib.pyplot as plt

from tqdm import tqdm

import pandas as pd

data = pd.read_csv(r'data.csv')

list_discrete = data.select_dtypes(include=['object']).columns.tolist()

home_ownership_mapping = {'Own Home': 1, 'Rent': 2,

'Have Mortgage': 3, 'Home Mortgage': 4}

data['Home Ownership'] = data['Home Ownership'].map(home_ownership_mapping)

years_in_job_mapping = {'< 1 year': 1, '1 year': 2, '2 years': 3, '3 years': 4, '4 years': 5,

'5 years': 6, '6 years': 7, '7 years': 8, '8 years': 9, '9 years': 10, '10+ years': 11}

data['Years in current job'] = data['Years in current job'].map(

years_in_job_mapping)

data = pd.get_dummies(data, columns=['Purpose'])

data2 = pd.read_csv(r'data.csv')

list_new = []

for i in data.columns:

if i not in data2.columns:

list_new.append(i)

for i in list_new:

data[i] = data[i].astype(int)

term_mapping = {'Short Term': 0, 'Long Term': 1}

data['Term'] = data['Term'].map(term_mapping)

data.rename(columns={'Term': 'Long Term'}, inplace=True)

list_continuous = data.select_dtypes(

include=['int64', 'float64']).columns.tolist()

for i in list_continuous:

median_value = data[i].median()

data[i] = data[i].fillna(median_value)

X = data.drop(['Credit Default'], axis=1)

y = data['Credit Default']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')

print(f'使用设备: {device}\n')

scaler = MinMaxScaler()

X_train = scaler.fit_transform(X_train)

X_test = scaler.transform(X_test)

X_train = torch.FloatTensor(X_train).to(device)

y_train = torch.LongTensor(y_train.values).to(device)

X_test = torch.FloatTensor(X_test).to(device)

y_test = torch.LongTensor(y_test.values).to(device)

class MLP_Original(nn.Module):

def init(self):

super(MLP_Original, self).init()

self.fc1 = nn.Linear(31, 10)

self.relu = nn.ReLU()

self.fc2 = nn.Linear(10, 3)

def forward(self, x):

out = self.fc1(x)

out = self.relu(out)

out = self.fc2(out)

return out

class MLP_Larger(nn.Module):

def init(self):

super(MLP_Larger, self).init()

self.fc1 = nn.Linear(31, 20)

self.relu = nn.ReLU()

self.fc2 = nn.Linear(20, 10)

self.fc3 = nn.Linear(10, 3)

def forward(self, x):

out = self.fc1(x)

out = self.relu(out)

out = self.fc2(out)

out = self.relu(out)

out = self.fc3(out)

return out

class MLP_Smaller(nn.Module):

def init(self):

super(MLP_Smaller, self).init()

self.fc1 = nn.Linear(31, 5)

self.relu = nn.ReLU()

self.fc2 = nn.Linear(5, 3)

def forward(self, x):

out = self.fc1(x)

out = self.relu(out)

out = self.fc2(out)

return out

class MLP_Tanh(nn.Module):

def init(self):

super(MLP_Tanh, self).init()

self.fc1 = nn.Linear(31, 10)

self.act = nn.Tanh()

self.fc2 = nn.Linear(10, 3)

def forward(self, x):

out = self.fc1(x)

out = self.act(out)

out = self.fc2(out)

return out

def train_and_evaluate(model_class, optimizer_class, lr, num_epochs=20000):

model = model_class().to(device)

criterion = nn.CrossEntropyLoss()

optimizer = optimizer_class(model.parameters(), lr=lr)

losses = []

epochs = []

start_time = time.time()

with tqdm(total=num_epochs, desc=f'训练 {model_class.name}', unit='epoch') as pbar:

for epoch in range(num_epochs):

outputs = model(X_train)

loss = criterion(outputs, y_train)

optimizer.zero_grad()

loss.backward()

optimizer.step()

if (epoch + 1) % 200 == 0:

losses.append(loss.item())

epochs.append(epoch + 1)

pbar.set_postfix({'Loss': f'{loss.item():.4f}'})

if (epoch + 1) % 1000 == 0:

pbar.update(1000)

if pbar.n < num_epochs:

pbar.update(num_epochs - pbar.n)

time_all = time.time() - start_time

with torch.no_grad():

outputs = model(X_test)

_, predicted = torch.max(outputs.data, 1)

accuracy = (predicted == y_test).sum().item() / y_test.size(0)

print(f'{model_class.name} 训练时间: {time_all:.2f}秒, 测试准确率: {accuracy:.4f}\n')

return epochs, losses, accuracy

configs = [

(MLP_Original, optim.SGD, 0.01),

(MLP_Larger, optim.SGD, 0.01),

(MLP_Smaller, optim.SGD, 0.01),

(MLP_Tanh, optim.SGD, 0.01),

(MLP_Original, optim.Adam, 0.001),

(MLP_Original, optim.SGD, 0.1),

(MLP_Original, optim.SGD, 0.001)

]

plt.figure(figsize=(12, 8))

for config in configs:

epochs, losses, accuracy = train_and_evaluate(*config)

plt.plot(epochs, losses, label=f'{config[0].name} {config[1].name} lr={config[2]} (Acc:{accuracy:.2f})')

plt.xlabel('Epoch')

plt.ylabel('Loss')

plt.title('Training Loss Comparison with Different Hyperparameters')

plt.legend()

plt.grid(True)

plt.show()

相关推荐
MediaTea27 分钟前
Python 第三方库:matplotlib(科学绘图与数据可视化)
开发语言·python·信息可视化·matplotlib
草莓熊Lotso36 分钟前
C++ 方向 Web 自动化测试入门指南:从概念到 Selenium 实战
前端·c++·python·selenium
我是李武涯1 小时前
PyTorch Dataloader工作原理 之 default collate_fn操作
pytorch·python·深度学习
Kratzdisteln2 小时前
【Python】绘制椭圆眼睛跟随鼠标交互算法配图详解
python·数学·numpy·pillow·matplotlib·仿射变换
maxruan2 小时前
PyTorch学习
人工智能·pytorch·python·学习
唐古乌梁海2 小时前
【python】在Django中,执行原生SQL查询
python·sql·django
程序员大雄学编程3 小时前
「用Python来学微积分」5. 曲线的极坐标方程
开发语言·python·微积分
一位代码4 小时前
python | requests爬虫如何正确获取网页编码?
开发语言·爬虫·python
可触的未来,发芽的智生4 小时前
新奇特:神经网络速比器,小镇债务清零的算法奇缘
javascript·人工智能·python
mortimer4 小时前
还在被 Windows 路径的大小写和正反斜杠坑?是时候让 pathlib 拯救你的代码了!
人工智能·python