Python学习从0到1 day26 第三阶段 Spark ④ 数据输出

半山腰太挤了,你该去山顶看看

------ 24.11.10

一、输出为python对象

1.collect算子

功能:

将RDD各个分区内的数据,统一收集到Driver中,形成一个List对象

语法:

rdd.collect()

返回值是一个list列表

示例:

python 复制代码
from pyspark import SparkConf,SparkContext
import os

conf = SparkConf().setMaster("local").setAppName("test_spark")
os.environ['PYSPARK_PYTHON'] = "E:/python.learning/pyt/scripts/python.exe"
sc = SparkContext(conf = conf)

Set = {"小明","小红","小强"}
Tuple = ("小明","小红","小强")

set_rdd = sc.parallelize(Set)
tuple_rdd = sc.parallelize(Tuple)

print(set_rdd.collect())
print(tuple_rdd.collect())

2.reduce算子

功能:

对RDD数据集按照你传入的逻辑进行聚合

语法:

python 复制代码
rdd.reduce(func)

rdd = sc.parallelize(range(1 , 10))
# 将rdd的数据进行累加求和
print(rdd.reduce(lambda a , b : a + b))

返回值等同于计算函数的返回值

示例:

python 复制代码
from pyspark import SparkContext,SparkConf
import os
import json

os.environ['PYSPARK_PYTHON'] = "E:/python.learning/pyt/scripts/python.exe"

conf = SparkConf().setMaster("local").setAppName("test_spark")
sc = SparkContext(conf = conf)

List = [1,2,3,4,5,6,7,8,9]
rdd = sc.parallelize(List)
print(rdd.reduce(lambda x, y : x + y))

3.take算子

功能:

取RDD的前N个元素,组合成list返回

语法:

python 复制代码
sc.parallelize([3,2,1,4,5,6]).take(5)    # [3,2,1,4,5]

返回前n个元素组成的list

示例:

python 复制代码
from pyspark import SparkContext,SparkConf
import os
import json

os.environ['PYSPARK_PYTHON'] = "E:/python.learning/pyt/scripts/python.exe"
conf = SparkConf().setMaster("local[*]").setAppName("test_spark")
sc = SparkContext(conf=conf)
List = (1,2,3,4,5,6,7,8,9)
rdd = sc.parallelize(List)
res = rdd.take(4)
print("前四个元素为:"+res)

4.count算子

功能:

计算RDD有多少条数据

语法:

python 复制代码
sc.parallelize([3,2,1,4,5,6]).count()

返回值是一个数字

示例:

python 复制代码
from pyspark import SparkConf,SparkContext
import os
import json

os.environ['PYSPARK_PYTHON'] = "E:/python.learning/pyt/scripts/python.exe"
conf = SparkConf().setMaster("local[*]").setAppName("test_spark")
sc = SparkContext(conf=conf)

rdd = sc.parallelize(["yyh","hl","grq","zxj","cby","wfe","mrr","qjy"])
print(rdd.count())

二、输出到文件中

1.saveAsTextFile算子

功能:

将RDD的数据写入文本文件中

支持本地写出、 hdfs等文件系统

语法:

python 复制代码
rdd = sc.parallelize([1,2,3,4,5])
rdd.saveAsTextFile("../data/output/test.txt")

2.配置Hadoop相关依赖

调用保存文件的算子,需要配置Hadoop依赖

① 下载Hadoop安装包

python 复制代码
http://archive.apache.org/dist/hadoop/common/hadoop-3.0.0/hadoop-3.0.0.tar.gz

② 解压到电脑任意位置

③ 在Python代码中使用os模块配置:

python 复制代码
os.environ['HADOOP HOME']='HADOOP解压文件夹路径'
E:\python.learning\hadoop分布式相关\hadoop-3.0.0

④ 下载winutils.exe,并放入Hadoop解压文件夹的bin目录内

python 复制代码
https://raw.githubusercontent.com/steveloughran/winutils/master/hadoop-3.0.0/bin/winutils.exe

⑤ 下载hadoop.dll,并放入:C:/Windows/System32 文件夹内

python 复制代码
https://raw.githubusercontent.com/steveloughran/winutils/master/hadoop-3.0.0/bin/hadoop.dll


3.代码示例

python 复制代码
from pyspark import SparkConf,SparkContext
import os

conf = SparkConf().setMaster("local").setAppName("test_spark")
os.environ['PYSPARK_PYTHON'] = "E:/python.learning/pyt/scripts/python.exe"
sc = SparkContext(conf = conf)

# 准备RDD1
rdd1 = sc.parallelize([1,2,3,4,5])

# 准备RDD2
rdd2 = sc.parallelize([("Hello, 3"),("Spark", 5),("Hi", 7)])

# 准备RDD3
rdd3 = sc.parallelize([[1, 3, 5],[6, 7, 9],[11, 13, 11]])

# 输出到文件中
rdd1.saveAsTextFile("E:\python.learning\hadoop分布式相关\data\output1/rdd1")
rdd2.saveAsTextFile("E:\python.learning\hadoop分布式相关\data\output2/rdd2")
rdd3.saveAsTextFile("E:\python.learning\hadoop分布式相关\data\output3/rdd3")

**注:**如果输出路径的文件存在,代码将会报错


4.运行结果

创建几个文件取决于Hadoop上的分区数量

**解决方式:**修改rdd的分区


5.修改rdd分区为1个

方式1

Sparkconf对象设置属性全局并行度为1:

python 复制代码
from pyspark import SparkConf, SparkContext
import os
os.environ['PYSPARK_PYTHON'] = "E:/python.learning/pyt/scripts/python.exe"
os.environ['HADOOP_HOME'] = "E:\python.learning\hadoop分布式相关\hadoop-3.0.0"
conf = SparkConf().setMaster("local").setAppName("test_spark")
conf.set("spark.default.parallelize", "1")
sc = SparkContext(conf = conf)

# 准备RDD1
rdd1 = sc.parallelize([1,2,3,4,5])

# 准备RDD2
rdd2 = sc.parallelize([("Hello, 3"),("Spark", 5),("Hi", 7)])

# 准备RDD3
rdd3 = sc.parallelize([[1, 3, 5],[6, 7, 9],[11, 13, 11]])

# 输出到文件中
rdd1.saveAsTextFile("E:\python.learning\hadoop分布式相关\data\output1/rdd1")
rdd2.saveAsTextFile("E:\python.learning\hadoop分布式相关\data\output2/rdd2")
rdd3.saveAsTextFile("E:\python.learning\hadoop分布式相关\data\output3/rdd3")

方式2

创建RDD的时候设置 parallelize方法传入numSlices参数为1:

python 复制代码
rdd1 = sc.parallelize([1,2,3,4,5],1)
相关推荐
雁于飞1 小时前
c语言贪吃蛇(极简版,基本能玩)
c语言·开发语言·笔记·学习·其他·课程设计·大作业
大丈夫立于天地间10 小时前
ISIS基础知识
网络·网络协议·学习·智能路由器·信息与通信
Chambor_mak11 小时前
stm32单片机个人学习笔记14(USART串口数据包)
stm32·单片机·学习
PaLu-LI12 小时前
ORB-SLAM2源码学习:Initializer.cc⑧: Initializer::CheckRT检验三角化结果
c++·人工智能·opencv·学习·ubuntu·计算机视觉
yuanbenshidiaos12 小时前
【大数据】机器学习----------计算机学习理论
大数据·学习·机器学习
汤姆和佩琦12 小时前
2025-1-20-sklearn学习(42) 使用scikit-learn计算 钿车罗帕,相逢处,自有暗尘随马。
人工智能·python·学习·机器学习·scikit-learn·sklearn
Tech智汇站13 小时前
Quick Startup,快捷处理自启程序的工具,加快电脑开机速度!
经验分享·科技·学习·学习方法·改行学it
qq_3127384513 小时前
jvm学习总结
jvm·学习
执念斩长河14 小时前
Go反射学习笔记
笔记·学习·golang
陈王卜15 小时前
html与css学习笔记(2)
笔记·学习