如何在FastAPI中灵活使用路径参数、查询参数和请求体参数进行接口设计

In FastAPI, you can handle different types of parameters in your endpoints, such as path parameters, query parameters, and request body parameters. Each type of parameter is handled differently depending on how it is defined in the endpoint function.

1. Path Parameters

Path parameters are part of the URL path. They are typically used to pass resources or identifiers that are part of the route, for example, /items/{item_id}.

Example:

python 复制代码
@app.put("/items/{item_id}")
async def read_item(item_id: int):
    return {"item_id": item_id}

2. Query Parameters

Query parameters are part of the URL after the ? symbol, and they are used to pass additional data to the request. They are typically used with GET or PUT requests and are defined as function parameters without braces.

Example with a single query parameter:

python 复制代码
@app.put("/items/")
async def read_item(item_id: int):
    return {"item_id": item_id}

To test this with requests:

python 复制代码
import requests
url = 'http://127.0.0.1:8009/items/?item_id=5'
res = requests.put(url)
print(res.text)  # Output: {"item_id": 5}

3. Request Body Parameters

Request body parameters are used when you need to send structured data as the body of the request. These can be either single or multiple parameters passed as JSON in the request body.

Single Request Body Parameter

To specify that a parameter should be in the request body, you use Body().

Example:

python 复制代码
from fastapi import Body, FastAPI

@app.put("/items/")
async def read_item(item_id: int = Body(...)):
    return {"item_id": item_id}

To test with requests:

python 复制代码
import requests
url = 'http://127.0.0.1:8009/items/'
res = requests.put(url, json={"item_id": 5})
print(res.text)  # Output: {"item_id": 5}
Multiple Request Body Parameters

You can also define multiple parameters in the request body by using Body() for each one.

Example:

python 复制代码
from fastapi import Body, FastAPI

@app.put("/items/")
async def read_item(item_id: int = Body(...), name: str = Body(...)):
    return {"item_id": item_id, "name": name}

To test with requests:

python 复制代码
import requests
url = 'http://127.0.0.1:8009/items/'
res = requests.put(url, json={"item_id": 5, "name": "张三"})
print(res.text)  # Output: {"item_id": 5, "name": "张三"}

4. Using Pydantic Models for Request Body

You can also use Pydantic models to define request bodies, which gives you more control and validation over the incoming data.

Example:

python 复制代码
from fastapi import FastAPI
from pydantic import BaseModel

class Item(BaseModel):
    name: str
    description: str | None = None
    price: float
    tax: float | None = None

@app.put("/items/")
async def read_item(item: Item):
    return {"name": item.name, "price": item.price}

To test with requests:

python 复制代码
import requests
url = 'http://127.0.0.1:8009/items/'
data = {"name": "细胞生物学", "description": "考研书籍", "price": 35.8, "tax": 0.6}
res = requests.put(url, json=data)
print(res.text)  # Output: {"name": "细胞生物学", "price": 35.8}

5. Mixed Parameters (Path, Query, and Body)

You can also mix path, query, and body parameters in a single endpoint. FastAPI will automatically handle them correctly.

Example:

python 复制代码
from fastapi import Body, FastAPI

@app.put("/items/{name}")
async def read_item(name: str, age: int, item_id: int = Body(...)):
    return {"name": name, "age": age, "item_id": item_id}

Testing via FastAPI's Documentation

FastAPI also provides a built-in interactive docs interface at /docs that allows you to test all your endpoints directly in the browser. You can input values for query parameters, request body parameters, and see the results.

To access the docs:

  1. Run the FastAPI app.
  2. Open http://127.0.0.1:8009/docs in a browser.
  3. Test your endpoints using the interactive interface by clicking on "Try it out", filling in the parameters, and clicking "Execute".
相关推荐
-SGlow-4 小时前
MySQL相关概念和易错知识点(2)(表结构的操作、数据类型、约束)
linux·运维·服务器·数据库·mysql
明月5665 小时前
Oracle 误删数据恢复
数据库·oracle
♡喜欢做梦6 小时前
【MySQL】深入浅出事务:保证数据一致性的核心武器
数据库·mysql
遇见你的雩风7 小时前
MySQL的认识与基本操作
数据库·mysql
dblens 数据库管理和开发工具7 小时前
MySQL新增字段DDL:锁表全解析、避坑指南与实战案例
数据库·mysql·dblens·dblens mysql·数据库连接管理
weixin_419658317 小时前
MySQL的基础操作
数据库·mysql
不辉放弃8 小时前
ZooKeeper 是什么?
数据库·大数据开发
Goona_8 小时前
拒绝SQL恐惧:用Python+pyqt打造任意Excel数据库查询系统
数据库·python·sql·excel·pyqt
程序员编程指南9 小时前
Qt 数据库连接池实现与管理
c语言·数据库·c++·qt·oracle
幼儿园老大*11 小时前
数据中心-时序数据库InfluxDB
数据库·时序数据库