如何在FastAPI中灵活使用路径参数、查询参数和请求体参数进行接口设计

In FastAPI, you can handle different types of parameters in your endpoints, such as path parameters, query parameters, and request body parameters. Each type of parameter is handled differently depending on how it is defined in the endpoint function.

1. Path Parameters

Path parameters are part of the URL path. They are typically used to pass resources or identifiers that are part of the route, for example, /items/{item_id}.

Example:

python 复制代码
@app.put("/items/{item_id}")
async def read_item(item_id: int):
    return {"item_id": item_id}

2. Query Parameters

Query parameters are part of the URL after the ? symbol, and they are used to pass additional data to the request. They are typically used with GET or PUT requests and are defined as function parameters without braces.

Example with a single query parameter:

python 复制代码
@app.put("/items/")
async def read_item(item_id: int):
    return {"item_id": item_id}

To test this with requests:

python 复制代码
import requests
url = 'http://127.0.0.1:8009/items/?item_id=5'
res = requests.put(url)
print(res.text)  # Output: {"item_id": 5}

3. Request Body Parameters

Request body parameters are used when you need to send structured data as the body of the request. These can be either single or multiple parameters passed as JSON in the request body.

Single Request Body Parameter

To specify that a parameter should be in the request body, you use Body().

Example:

python 复制代码
from fastapi import Body, FastAPI

@app.put("/items/")
async def read_item(item_id: int = Body(...)):
    return {"item_id": item_id}

To test with requests:

python 复制代码
import requests
url = 'http://127.0.0.1:8009/items/'
res = requests.put(url, json={"item_id": 5})
print(res.text)  # Output: {"item_id": 5}
Multiple Request Body Parameters

You can also define multiple parameters in the request body by using Body() for each one.

Example:

python 复制代码
from fastapi import Body, FastAPI

@app.put("/items/")
async def read_item(item_id: int = Body(...), name: str = Body(...)):
    return {"item_id": item_id, "name": name}

To test with requests:

python 复制代码
import requests
url = 'http://127.0.0.1:8009/items/'
res = requests.put(url, json={"item_id": 5, "name": "张三"})
print(res.text)  # Output: {"item_id": 5, "name": "张三"}

4. Using Pydantic Models for Request Body

You can also use Pydantic models to define request bodies, which gives you more control and validation over the incoming data.

Example:

python 复制代码
from fastapi import FastAPI
from pydantic import BaseModel

class Item(BaseModel):
    name: str
    description: str | None = None
    price: float
    tax: float | None = None

@app.put("/items/")
async def read_item(item: Item):
    return {"name": item.name, "price": item.price}

To test with requests:

python 复制代码
import requests
url = 'http://127.0.0.1:8009/items/'
data = {"name": "细胞生物学", "description": "考研书籍", "price": 35.8, "tax": 0.6}
res = requests.put(url, json=data)
print(res.text)  # Output: {"name": "细胞生物学", "price": 35.8}

5. Mixed Parameters (Path, Query, and Body)

You can also mix path, query, and body parameters in a single endpoint. FastAPI will automatically handle them correctly.

Example:

python 复制代码
from fastapi import Body, FastAPI

@app.put("/items/{name}")
async def read_item(name: str, age: int, item_id: int = Body(...)):
    return {"name": name, "age": age, "item_id": item_id}

Testing via FastAPI's Documentation

FastAPI also provides a built-in interactive docs interface at /docs that allows you to test all your endpoints directly in the browser. You can input values for query parameters, request body parameters, and see the results.

To access the docs:

  1. Run the FastAPI app.
  2. Open http://127.0.0.1:8009/docs in a browser.
  3. Test your endpoints using the interactive interface by clicking on "Try it out", filling in the parameters, and clicking "Execute".
相关推荐
fmdpenny9 分钟前
SQL中联表的运用
数据库·sql
不剪发的Tony老师16 分钟前
互联网SQL面试题:用户会话时长分析
数据库·sql
睡觉z34 分钟前
Shell编程之正则表达式与文本处理器
数据库·mysql·正则表达式
TDengine (老段)37 分钟前
TDengine 做为 Spark 数据源
大数据·数据库·物联网·ajax·spark·时序数据库·tdengine
Dreams_l1 小时前
MySQL初阶:查询进阶
数据库·mysql
码农黛兮_461 小时前
数据库数据清洗、预处理与质量监控、 数据质量的核心概念
数据库
张哈大3 小时前
【 Redis | 实战篇 秒杀实现 】
数据库·redis·缓存
weixin_472339463 小时前
Postgresql与openguass对比
数据库·postgresql
惊起白鸽4508 小时前
MySQL全量,增量备份与恢复
数据库·mysql
暮雨疏桐9 小时前
MySQL SQL Mode及其说明
数据库·sql·mysql·sql mode