如何在FastAPI中灵活使用路径参数、查询参数和请求体参数进行接口设计

In FastAPI, you can handle different types of parameters in your endpoints, such as path parameters, query parameters, and request body parameters. Each type of parameter is handled differently depending on how it is defined in the endpoint function.

1. Path Parameters

Path parameters are part of the URL path. They are typically used to pass resources or identifiers that are part of the route, for example, /items/{item_id}.

Example:

python 复制代码
@app.put("/items/{item_id}")
async def read_item(item_id: int):
    return {"item_id": item_id}

2. Query Parameters

Query parameters are part of the URL after the ? symbol, and they are used to pass additional data to the request. They are typically used with GET or PUT requests and are defined as function parameters without braces.

Example with a single query parameter:

python 复制代码
@app.put("/items/")
async def read_item(item_id: int):
    return {"item_id": item_id}

To test this with requests:

python 复制代码
import requests
url = 'http://127.0.0.1:8009/items/?item_id=5'
res = requests.put(url)
print(res.text)  # Output: {"item_id": 5}

3. Request Body Parameters

Request body parameters are used when you need to send structured data as the body of the request. These can be either single or multiple parameters passed as JSON in the request body.

Single Request Body Parameter

To specify that a parameter should be in the request body, you use Body().

Example:

python 复制代码
from fastapi import Body, FastAPI

@app.put("/items/")
async def read_item(item_id: int = Body(...)):
    return {"item_id": item_id}

To test with requests:

python 复制代码
import requests
url = 'http://127.0.0.1:8009/items/'
res = requests.put(url, json={"item_id": 5})
print(res.text)  # Output: {"item_id": 5}
Multiple Request Body Parameters

You can also define multiple parameters in the request body by using Body() for each one.

Example:

python 复制代码
from fastapi import Body, FastAPI

@app.put("/items/")
async def read_item(item_id: int = Body(...), name: str = Body(...)):
    return {"item_id": item_id, "name": name}

To test with requests:

python 复制代码
import requests
url = 'http://127.0.0.1:8009/items/'
res = requests.put(url, json={"item_id": 5, "name": "张三"})
print(res.text)  # Output: {"item_id": 5, "name": "张三"}

4. Using Pydantic Models for Request Body

You can also use Pydantic models to define request bodies, which gives you more control and validation over the incoming data.

Example:

python 复制代码
from fastapi import FastAPI
from pydantic import BaseModel

class Item(BaseModel):
    name: str
    description: str | None = None
    price: float
    tax: float | None = None

@app.put("/items/")
async def read_item(item: Item):
    return {"name": item.name, "price": item.price}

To test with requests:

python 复制代码
import requests
url = 'http://127.0.0.1:8009/items/'
data = {"name": "细胞生物学", "description": "考研书籍", "price": 35.8, "tax": 0.6}
res = requests.put(url, json=data)
print(res.text)  # Output: {"name": "细胞生物学", "price": 35.8}

5. Mixed Parameters (Path, Query, and Body)

You can also mix path, query, and body parameters in a single endpoint. FastAPI will automatically handle them correctly.

Example:

python 复制代码
from fastapi import Body, FastAPI

@app.put("/items/{name}")
async def read_item(name: str, age: int, item_id: int = Body(...)):
    return {"name": name, "age": age, "item_id": item_id}

Testing via FastAPI's Documentation

FastAPI also provides a built-in interactive docs interface at /docs that allows you to test all your endpoints directly in the browser. You can input values for query parameters, request body parameters, and see the results.

To access the docs:

  1. Run the FastAPI app.
  2. Open http://127.0.0.1:8009/docs in a browser.
  3. Test your endpoints using the interactive interface by clicking on "Try it out", filling in the parameters, and clicking "Execute".
相关推荐
程序定小飞11 小时前
基于springboot的web的音乐网站开发与设计
java·前端·数据库·vue.js·spring boot·后端·spring
小灰灰搞电子11 小时前
Rust 操作Sqlite数据库详细教程
数据库·rust·sqlite
IvorySQL11 小时前
你真的知道你正在运行哪个 PostgreSQL吗?
数据库·postgresql
l1t12 小时前
利用DeepSeek采用hugeint转字符串函数完善luadbi-duckdb的decimal处理
数据库·lua·c·duckdb·deepseek
无敌最俊朗@12 小时前
Qt 开发终极坑点手册图表版本
数据库
yumgpkpm12 小时前
Doris 并入CMP7(类Cloudera CDP 7.3.1 404华为鲲鹏ARM版)的方案和实施源代码
大数据·oracle·sqlite·sqoop·milvus·cloudera
yumgpkpm12 小时前
Doris在CMP7(类Cloudera CDP 7 404版华为Kunpeng)启用 Kerberos部署Doris
大数据·hive·hadoop·python·oracle·flink·cloudera
老衲提灯找美女13 小时前
MySQL数据库基础操作:
数据库·mysql·oracle
轻舟客丶13 小时前
ORA-03113的解决方案
数据库·经验分享·笔记·oracle
ヾChen13 小时前
头歌MySQL——复杂查询
数据库·物联网·学习·mysql·头歌