Flink是如何实现 End-To-End Exactly-once的?

flink 如何实现端到端的 Exactly-once?

端到端包含 Source, Transformation,Sink 三部分的Exactly-once

  • Source:支持数据的replay,如Kafka的offset。
  • Transformation:借助于checkpoint
  • Sink:Checkpoint + 两阶段事务提交

两阶段提交?

  • 一旦Flink开始做checkpoint操作,就会进入pre-commit "预提交"阶段,同时JobManagerCoordinator会将Barrier注入数据流中。
  • 当所有的barrier在算子中成功进行一遍传递(就是Checkpoint完成),并完成快照后,"预提交"阶段完成。
  • 等所有的算子完成"预提交",就会发起一个commit "提交"动作,但是任何一个"预提交" 失败都会导致Flink回滚到最近的checkpoint。

两阶段提交API

beginTransaction:在开启事务之前,我们在目标文件系统的临时目录中创建一个临时文件,后面在处理数据时将数据写入此文件。

preCommit:在预提交阶段,刷写(flush)文件,然后关闭文件,之后就不能写入到文件了,我们还将为属于下一个检查点的任何后续写入启动新事务。

commit:在提交阶段,我们将预提交的文件原子性移动到真正的目标目录中,请注意,这回增加输出数据可见性的延迟。

abort:在中止阶段,我们删除临时文件。

参考:

https://www.cnblogs.com/kunande/p/17142718.html

相关推荐
阿里云大数据AI技术1 天前
StarRocks 助力数禾科技构建实时数仓:从数据孤岛到智能决策
大数据
Lx3521 天前
Hadoop数据处理优化:减少Shuffle阶段的性能损耗
大数据·hadoop
武子康1 天前
大数据-99 Spark Streaming 数据源全面总结:原理、应用 文件流、Socket、RDD队列流
大数据·后端·spark
阿里云大数据AI技术2 天前
大数据公有云市场第一,阿里云占比47%!
大数据
Lx3522 天前
Hadoop容错机制深度解析:保障作业稳定运行
大数据·hadoop
T06205142 天前
工具变量-5G试点城市DID数据(2014-2025年
大数据
向往鹰的翱翔2 天前
BKY莱德因:5大黑科技逆转时光
大数据·人工智能·科技·生活·健康医疗
鸿乃江边鸟2 天前
向量化和列式存储
大数据·sql·向量化
IT毕设梦工厂2 天前
大数据毕业设计选题推荐-基于大数据的客户购物订单数据分析与可视化系统-Hadoop-Spark-数据可视化-BigData
大数据·hadoop·数据分析·spark·毕业设计·源码·bigdata
java水泥工2 天前
基于Echarts+HTML5可视化数据大屏展示-白茶大数据溯源平台V2
大数据·echarts·html5