定义: 令 k ≤ n ≤ q k\le n\le q k≤n≤q, α ∈ F q n \alpha\in\mathbb{F}q^n α∈Fqn是n元组( α = ( α 1 , . . . , α n ) , α i ≠ α j , ∀ i ≠ j ∈ { 1 , . . . , n } \alpha=(\alpha_1,...,\alpha_n),\alpha_i\ne \alpha_j,\forall i\ne j\in \{1,...,n\} α=(α1,...,αn),αi=αj,∀i=j∈{1,...,n})。令 β ∈ F q n \beta\in\mathbb{F}q^n β∈Fqn, β = ( β 1 , . . . , β n ) , β i ≠ 0 , ∀ i ∈ { 1 , . . . , n } \beta=(\beta_1,...,\beta_n),\beta_i\ne0,\forall i\in\{1,...,n\} β=(β1,...,βn),βi=0,∀i∈{1,...,n}。长度 n n n维度 k k k的GRS码( G R S n , k ( α , β ) GRS{n,k}(\alpha,\beta) GRSn,k(α,β)):
G R S n , k ( α , β ) = { ( β 1 f ( α 1 ) , . . . , β n f ( α n ) ) ∣ f ∈ F q [ x ] , d e g ( f ) < k } GRS{n,k}(\alpha,\beta)=\{(\beta_1f(\alpha_1),...,\beta_nf(\alpha_n))|f\in\mathbb{F}_q[x],deg(f)<k\} GRSn,k(α,β)={(β1f(α1),...,βnf(αn))∣f∈Fq[x],deg(f)<k}
当 β = ( 1 , . . . , 1 ) \beta=(1,...,1) β=(1,...,1)时,称为RS码( R S n , k ( α ) RS_{n,k}(\alpha) RSn,k(α))。