MATLAB求解带绝对值的规划问题

对于带有绝对值的非线性规划问题,尽量进行手工线性化再根据线性规划的方法去做。

例如:

对于 ∣ x i ∣ \vert x_i \vert ∣xi∣,我们无法运用正常的线性规划方式进行求解,因此我们可以进行变量变换,将模型转换为线性规划模型。

我们可以用两个线性规划变量来表示,令 u i = x i + ∣ x i ∣ 2 , v i = ∣ x i ∣ − x i 2 , i = 1 , 2 , 3 , 4 u_i= \dfrac {x_i+\vert x_i \vert} 2,v_i=\dfrac {\vert x_i \vert-x_i} 2,i=1,2,3,4 ui=2xi+∣xi∣,vi=2∣xi∣−xi,i=1,2,3,4

令 u u u= [ u 1 , u 2 , u 3 , u 4 ] T , v = [ v 1 , v 2 , v 3 , v 4 ] T [u_1,u_2,u_3,u_4]^T,v=[v_1,v_2,v_3,v_4]^T [u1,u2,u3,u4]T,v=[v1,v2,v3,v4]T

则转换成的线性规划模型为:
m i n min min c T ( u + v ) c^T(u+v) cT(u+v)
s t st st { A ( u − v ) ≤ b u , v ≥ 0 \left\{ \begin{matrix} A(u-v)\leq b \\ u,v\geq0 \end{matrix} \right. {A(u−v)≤bu,v≥0

所以我们在线性规划方程中添加一个变量就可以了。

matlab 复制代码
c=[1,2,3,4];b=[-2;-1;-1/2];
a=[1,-1,-1,1;1,-1,1,-3;1,-1,-2,3];
prob=optimproblem('ObjectiveSense','min');//目标函数最小化,也可以写成prob=optimproblem;
u=optimvar('u',4,'LowerBound',0)//决策变量
v=optimvar('v',4,'LowerBound',0)//决策变量
prob.Objective=sum(c*(u+v))//目标函数
prob.Constraints.con=a*(u-v)<=b//约束条件
[sol,fval,flag,out]=solve(prob)//fval返回了最优值
x=sol.u-sol.v//求出xi的值

结果为

则最优解为 x 1 = − 2 , x 2 = x 3 = x 4 = 0 x_1=-2,x_2=x_3=x_4=0 x1=−2,x2=x3=x4=0.

最优值 f v a l = 2 fval=2 fval=2.

相关推荐
土了个豆子的21 小时前
03.缓存池
开发语言·前端·缓存·visualstudio·c#
_extraordinary_1 天前
Java 多线程(一)
java·开发语言
爱喝水的鱼丶1 天前
SAP-ABAP: ABAP ASSIGN COMPONENT 语句详解:动态字段符号的利器作用用法示例详解
运维·开发语言·sap·abap·开发经验·动态字段符号
励志不掉头发的内向程序员1 天前
C++进阶——多态
开发语言·c++·学习
星马梦缘1 天前
Matlab机器人工具箱使用1 简单的描述类函数
matlab·矩阵·机器人·位姿·欧拉角·rpy角
雨中散步撒哈拉1 天前
13、做中学 | 初一下期 Golang数组与切片
开发语言·后端·golang
0wioiw01 天前
Go基础(③Cobra)
开发语言·后端·golang
楼田莉子1 天前
C++算法专题学习:栈相关的算法
开发语言·c++·算法·leetcode
晨非辰1 天前
#C语言——刷题攻略:牛客编程入门训练(九):攻克 分支控制(三)、循环控制(一),轻松拿捏!
c语言·开发语言·经验分享·学习方法·visual studio
_oP_i1 天前
Java 服务接口中解决跨域(CORS,Cross-Origin Resource Sharing)问题
java·开发语言