COR 损失函数

Correlation Regularization Loss (COR),是一种用于衡量特征之间线性相关性的损失函数,其目标是通过惩罚冗余的相关性,促使生成的特征彼此独立,提高模型的泛化能力。

计算公式:

特征矩阵, n是样本数量, d是特征维度。 COR损失函数的定义:

其中:是特征矩阵X的协方差; ,当i=j时, , 否则,

等价形式

协方差矩阵 C 表示特征之间的线性相关性;

​ 是理想目标(特征完全独立),单位矩阵;

COR 损失通过最小化 C 和 之间的差异,让特征尽量不相关。

应用场景:

在自动编码器(Autoencoder)中,COR 损失可以使编码器生成的特征彼此不相关,提升特征的多样性和表征能力;

通过最小化 COR 损失,约束源域和目标域特征的相关性,提升模型在目标域的泛化能力;

协方差矩阵的计算方法:

描述随机变量之间线性相关性的一种方法;

给定n个样本和d个特征,协方差矩阵是一个dXd维的对称矩阵,每个元素表示两个特征之间的协方差;

协方差的计算公式:

Cov(X,Y) = E[(X - E(X)) (Y - E(Y))]

E(X)表示变量X的期望;

X-E(X)变量的去中心化;

协方差能代表两个变量X和Y之间的相关性,即如果Cov(X,Y) > 0时,当X增大时,Y也倾向于增大,表现为正相关;

如果Cov(X,Y)<0时,当X增大时,Y倾向于减小,表现为负相关;

如果Cov(X,Y) = 0时,X和Y之间没有线性关系,但可能存在非线性关系;

协方差矩阵的计算公式:

对于特征矩阵(每行是一个样本,每列是一个特征),

其中,对X的每列特征减去其均值,进行去中心化

相关推荐
AL.千灯学长26 分钟前
DeepSeek接入Siri(已升级支持苹果手表)完整版硅基流动DeepSeek-R1部署
人工智能·gpt·ios·ai·苹果vision pro
LCG元1 小时前
大模型驱动的围术期质控系统全面解析与应用探索
人工智能
lihuayong1 小时前
计算机视觉:主流数据集整理
人工智能·计算机视觉·mnist数据集·coco数据集·图像数据集·cifar-10数据集·imagenet数据集
政安晨1 小时前
政安晨【零基础玩转各类开源AI项目】DeepSeek 多模态大模型Janus-Pro-7B,本地部署!支持图像识别和图像生成
人工智能·大模型·多模态·deepseek·janus-pro-7b
一ge科研小菜鸡1 小时前
DeepSeek 与后端开发:AI 赋能云端架构与智能化服务
人工智能·云原生
冰 河1 小时前
‌最新版DeepSeek保姆级安装教程:本地部署+避坑指南
人工智能·程序员·openai·deepseek·冰河大模型
维维180-3121-14551 小时前
AI赋能生态学暨“ChatGPT+”多技术融合在生态系统服务中的实践技术应用与论文撰写
人工智能·chatgpt
終不似少年遊*2 小时前
词向量与词嵌入
人工智能·深度学习·nlp·机器翻译·词嵌入
杜大哥2 小时前
如何在WPS打开的word、excel文件中,使用AI?
人工智能·word·excel·wps
Leiditech__2 小时前
人工智能时代电子机器人静电问题及电路设计防范措施
人工智能·嵌入式硬件·机器人·硬件工程