COR 损失函数

Correlation Regularization Loss (COR),是一种用于衡量特征之间线性相关性的损失函数,其目标是通过惩罚冗余的相关性,促使生成的特征彼此独立,提高模型的泛化能力。

计算公式:

特征矩阵, n是样本数量, d是特征维度。 COR损失函数的定义:

其中:是特征矩阵X的协方差; ,当i=j时, , 否则,

等价形式

协方差矩阵 C 表示特征之间的线性相关性;

​ 是理想目标(特征完全独立),单位矩阵;

COR 损失通过最小化 C 和 之间的差异,让特征尽量不相关。

应用场景:

在自动编码器(Autoencoder)中,COR 损失可以使编码器生成的特征彼此不相关,提升特征的多样性和表征能力;

通过最小化 COR 损失,约束源域和目标域特征的相关性,提升模型在目标域的泛化能力;

协方差矩阵的计算方法:

描述随机变量之间线性相关性的一种方法;

给定n个样本和d个特征,协方差矩阵是一个dXd维的对称矩阵,每个元素表示两个特征之间的协方差;

协方差的计算公式:

Cov(X,Y) = E[(X - E(X)) (Y - E(Y))]

E(X)表示变量X的期望;

X-E(X)变量的去中心化;

协方差能代表两个变量X和Y之间的相关性,即如果Cov(X,Y) > 0时,当X增大时,Y也倾向于增大,表现为正相关;

如果Cov(X,Y)<0时,当X增大时,Y倾向于减小,表现为负相关;

如果Cov(X,Y) = 0时,X和Y之间没有线性关系,但可能存在非线性关系;

协方差矩阵的计算公式:

对于特征矩阵(每行是一个样本,每列是一个特征),

其中,对X的每列特征减去其均值,进行去中心化

相关推荐
微学AI10 分钟前
融合注意力机制和BiGRU的电力领域发电量预测项目研究,并给出相关代码
人工智能·深度学习·自然语言处理·注意力机制·bigru
知来者逆22 分钟前
计算机视觉——速度与精度的完美结合的实时目标检测算法RF-DETR详解
图像处理·人工智能·深度学习·算法·目标检测·计算机视觉·rf-detr
一勺汤25 分钟前
YOLOv11改进-双Backbone架构:利用双backbone提高yolo11目标检测的精度
人工智能·yolo·双backbone·double backbone·yolo11 backbone·yolo 双backbone
武汉唯众智创27 分钟前
高职人工智能技术应用专业(计算机视觉方向)实训室解决方案
人工智能·计算机视觉·人工智能实训室·计算机视觉实训室·人工智能计算机视觉实训室
Johny_Zhao38 分钟前
MySQL 高可用集群搭建部署
linux·人工智能·mysql·信息安全·云计算·shell·yum源·系统运维·itsm
一只可爱的小猴子1 小时前
2022李宏毅老师机器学习课程笔记
人工智能·笔记·机器学习
地瓜机器人1 小时前
乐聚机器人与地瓜机器人达成战略合作,联合发布Aelos Embodied具身智能
人工智能·机器人
带娃的IT创业者1 小时前
《AI大模型趣味实战》基于RAG向量数据库的知识库AI问答助手设计与实现
数据库·人工智能
__Benco1 小时前
OpenHarmony - 小型系统内核(LiteOS-A)(十),魔法键使用方法,用户态异常信息说明
人工智能·harmonyos
小杨4041 小时前
python入门系列二十(peewee)
人工智能·python·pycharm