COR 损失函数

Correlation Regularization Loss (COR),是一种用于衡量特征之间线性相关性的损失函数,其目标是通过惩罚冗余的相关性,促使生成的特征彼此独立,提高模型的泛化能力。

计算公式:

特征矩阵, n是样本数量, d是特征维度。 COR损失函数的定义:

其中:是特征矩阵X的协方差; ,当i=j时, , 否则,

等价形式

协方差矩阵 C 表示特征之间的线性相关性;

​ 是理想目标(特征完全独立),单位矩阵;

COR 损失通过最小化 C 和 之间的差异,让特征尽量不相关。

应用场景:

在自动编码器(Autoencoder)中,COR 损失可以使编码器生成的特征彼此不相关,提升特征的多样性和表征能力;

通过最小化 COR 损失,约束源域和目标域特征的相关性,提升模型在目标域的泛化能力;

协方差矩阵的计算方法:

描述随机变量之间线性相关性的一种方法;

给定n个样本和d个特征,协方差矩阵是一个dXd维的对称矩阵,每个元素表示两个特征之间的协方差;

协方差的计算公式:

Cov(X,Y) = E[(X - E(X)) (Y - E(Y))]

E(X)表示变量X的期望;

X-E(X)变量的去中心化;

协方差能代表两个变量X和Y之间的相关性,即如果Cov(X,Y) > 0时,当X增大时,Y也倾向于增大,表现为正相关;

如果Cov(X,Y)<0时,当X增大时,Y倾向于减小,表现为负相关;

如果Cov(X,Y) = 0时,X和Y之间没有线性关系,但可能存在非线性关系;

协方差矩阵的计算公式:

对于特征矩阵(每行是一个样本,每列是一个特征),

其中,对X的每列特征减去其均值,进行去中心化

相关推荐
cloud studio AI应用6 分钟前
腾讯云 AI 代码助手:产品研发过程的思考和方法论
人工智能·云计算·腾讯云
禁默17 分钟前
第六届机器人、智能控制与人工智能国际学术会议(RICAI 2024)
人工智能·机器人·智能控制
Robot25125 分钟前
浅谈,华为切入具身智能赛道
人工智能
只怕自己不够好29 分钟前
OpenCV 图像运算全解析:加法、位运算(与、异或)在图像处理中的奇妙应用
图像处理·人工智能·opencv
果冻人工智能2 小时前
2025 年将颠覆商业的 8 大 AI 应用场景
人工智能·ai员工
代码不行的搬运工2 小时前
神经网络12-Time-Series Transformer (TST)模型
人工智能·神经网络·transformer
石小石Orz2 小时前
Three.js + AI:AI 算法生成 3D 萤火虫飞舞效果~
javascript·人工智能·算法
罗小罗同学2 小时前
医工交叉入门书籍分享:Transformer模型在机器学习领域的应用|个人观点·24-11-22
深度学习·机器学习·transformer
孤独且没人爱的纸鹤2 小时前
【深度学习】:从人工神经网络的基础原理到循环神经网络的先进技术,跨越智能算法的关键发展阶段及其未来趋势,探索技术进步与应用挑战
人工智能·python·深度学习·机器学习·ai
阿_旭2 小时前
TensorFlow构建CNN卷积神经网络模型的基本步骤:数据处理、模型构建、模型训练
人工智能·深度学习·cnn·tensorflow