COR 损失函数

Correlation Regularization Loss (COR),是一种用于衡量特征之间线性相关性的损失函数,其目标是通过惩罚冗余的相关性,促使生成的特征彼此独立,提高模型的泛化能力。

计算公式:

特征矩阵, n是样本数量, d是特征维度。 COR损失函数的定义:

其中:是特征矩阵X的协方差; ,当i=j时, , 否则,

等价形式

协方差矩阵 C 表示特征之间的线性相关性;

​ 是理想目标(特征完全独立),单位矩阵;

COR 损失通过最小化 C 和 之间的差异,让特征尽量不相关。

应用场景:

在自动编码器(Autoencoder)中,COR 损失可以使编码器生成的特征彼此不相关,提升特征的多样性和表征能力;

通过最小化 COR 损失,约束源域和目标域特征的相关性,提升模型在目标域的泛化能力;

协方差矩阵的计算方法:

描述随机变量之间线性相关性的一种方法;

给定n个样本和d个特征,协方差矩阵是一个dXd维的对称矩阵,每个元素表示两个特征之间的协方差;

协方差的计算公式:

Cov(X,Y) = E[(X - E(X)) (Y - E(Y))]

E(X)表示变量X的期望;

X-E(X)变量的去中心化;

协方差能代表两个变量X和Y之间的相关性,即如果Cov(X,Y) > 0时,当X增大时,Y也倾向于增大,表现为正相关;

如果Cov(X,Y)<0时,当X增大时,Y倾向于减小,表现为负相关;

如果Cov(X,Y) = 0时,X和Y之间没有线性关系,但可能存在非线性关系;

协方差矩阵的计算公式:

对于特征矩阵(每行是一个样本,每列是一个特征),

其中,对X的每列特征减去其均值,进行去中心化

相关推荐
程序员Linc2 分钟前
计算机视觉 vs 机器视觉 | 机器学习 vs 深度学习:核心差异与行业启示
深度学习·机器学习·计算机视觉·机器视觉
不去幼儿园2 分钟前
【启发式算法】Dijkstra算法详细介绍(Python)
人工智能·python·算法·机器学习·启发式算法·图搜索算法
serve the people10 分钟前
神经网络中梯度计算求和公式求导问题
神经网络·算法·机器学习
云卓SKYDROID12 分钟前
无人机投屏技术解码过程详解!
人工智能·5g·音视频·无人机·科普·高科技·云卓科技
zy_destiny18 分钟前
【YOLOv12改进trick】三重注意力TripletAttention引入YOLOv12中,实现遮挡目标检测涨点,含创新点Python代码,方便发论文
网络·人工智能·python·深度学习·yolo·计算机视觉·三重注意力
自由的晚风20 分钟前
深度学习在SSVEP信号分类中的应用分析
人工智能·深度学习·分类
大数据追光猿20 分钟前
【大模型技术】LlamaFactory 的原理解析与应用
人工智能·python·机器学习·docker·语言模型·github·transformer
玩电脑的辣条哥36 分钟前
大模型LoRA微调训练原理是什么?
人工智能·lora·微调
极客BIM工作室42 分钟前
DeepSeek V3 源码:从入门到放弃!
人工智能
神秘的土鸡1 小时前
如何在WPS中接入DeepSeek并使用OfficeAI助手(超细!成功版本)
人工智能·机器学习·自然语言处理·数据分析·llama·wps