提纲
- 背景介绍
- 三角方程组
- Gauss消去法
- 附录
一、背景介绍
1.1 线性方程组的相关概念
线性方程组在解决现实师姐问题中直接产生,最小二乘数据拟合、微分方程边值问题和初边值问题的数值解产生了大量的线性方程组。
线性方程组系数矩阵的类型分别有
- 稠密型(dense):几乎所有元素都是非零的
- 稀疏型(sparse):有大量零元素
- 带状的(banded)
- 三角状(triangular)
- 块状的(block structure)
解线性方程组的方法可以分为两类
- 直接法 (direct method)
经过有限步四则运算可球的方程组准确解的方法 - 迭代法 (iterative method)
从一个近似值出发,构造某种算法,使其逐步接近准确解
大多科学计算应用经过建模和数值离散后,都可归结为如下两种形式方程组的求解:
方程组形式
\[\begin{cases} a_{11}x_1+a_{12}x_2+\cdots+a_{1n}x_n=b_1,\\ a_{21}x_1+a_{22}x_2+\cdots+a_{2n}x_n=b_2,\\ \cdots\\ a_{n1}x_1+a_{n2}x_2+\cdots+a_{nn}x_n=b_n \end{cases} \]
矩阵形式
\[\begin{bmatrix} a_{11} & a_{12} &\cdots &a_{1n}\\ a_{21} & a_{22} &\cdots &a_{2n}\\ &&\cdots&\\ a_{n1} & a_{n2} &\cdots &a_{nn}\\ \end{bmatrix} \begin{bmatrix} x_1\\x_2\\\vdots\\x_n \end{bmatrix}= \begin{bmatrix} b_1\\b_2\\\vdots\\b_n \end{bmatrix} \]
\(Ax=b\)有唯一解\(\iff A\)非奇异
C++中的线性方程组
在线性代数中,一矩阵的尺寸通常称为阶数 (order)或维度 (dimension)。以下示例代码在主函数中定义了稀疏矩阵\(A\),常向量\(b\)和解向量\(x\)。
在**Eigen
** 库中,可以采用Eigen::MatrixXd
表示矩阵类型,采用Eigen::VectorXd
表示向量类型。矩阵和向量的尺寸可以在创建时进行设定。
需要注意的是,
Eigen
库只中Eigen::VectorXd
默认为列向量,如果需要将其作为行向量进行运算,需要在使用时进行转置,例如:X.transpose()
即使没有硬性的要求,但还是建议读者使用const size_t
类型的变量单独存储矩阵的尺寸,这将使得代码维护变得更容易。
C++
#include <iostream>
#include <Eigen/Dense>
int main() {
// 矩阵的阶数
const size_t order = 6;
// 定义系数矩阵 A
Eigen::MatrixXd A(order, order); // 指定尺寸为 order * order
// 定义常向量 b
Eigen::VectorXd b(order); // 指定尺寸为 order * 1
// 定义解向量 x
Eigen::VectorXd x(order); // 指定尺寸为 order * 1
}
采用直接法求解线性方程组的求解器通常包含三个输入,即:系数矩阵\(A\)、常向量\(b\)和解向量\(x\)。
在进行求解前,首先应当检查输入是否符合求解器要求,例如针对上三角矩阵的求解器需要检查系数矩阵是否为上三角矩阵;一般的,输入应满足三个要求:
- 系数矩阵\(A\)为方阵
- 系数矩阵\(A\)的行数等于常向量\(b\)的行数
- 系数矩阵\(A\)的列数等于解向量\(x\)的行数
矩阵的行数可以通过
.rows()
方法得到矩阵的列数可以通过
.cols()
方法得到
该方法对于向量同样适用,特别的,向量的列数总是1
以下给出参考的实现:
C++
void size_check(const Eigen::MatrixXd& A,
const Eigen::VectorXd& b,
const Eigen::VectorXd& x)
{
// 检查A是否为方阵
if (A.rows() != A.cols()) {
throw std::invalid_argument("Error: The coefficient matrix of the system of equations is not a square matrix.");
}
// 检查系数矩阵A的尺寸是否与常向量b的尺寸匹配
if (A.rows() != b.rows()) {
throw std::invalid_argument("Error: The order of the coefficient matrix A does not match the order of the constant vector b.");
}
// 检查系数矩阵A的尺寸是否与解向量x的尺寸匹配
if (A.cols() != x.rows()) {
throw std::invalid_argument("Error: The order of the coefficient matrix A does not match the order of the solution vector x.");
}
}
void solve(const Eigen::MatrixXd& A,
const Eigen::VectorXd& b,
Eigen::VectorXd& x)
{
// 检查尺寸是否合适
size_check(A, b, x);
// 求解
// ...
}
在实际实现时有几个应注意的细节
为什么不将解向量\(x\)作为输出?
将解向量\(x\)作为输出的函数的使用方式为:ans=solve(A,b)
,如果返回值的尺寸与变量ans
的尺寸不一致则会导致程序错误。为了避免该问题,必须在创建变量ans
时设置尺寸,并在求解前检查尺寸,伪代码如下
C++
Eigen::VetorXd x(order);
if (x.rows() == A.cols()) { // 尺寸检查
x = solve(A,b);
}
显然,形如ans=solve(A,b,x)
的求解器更为易用,其类型检查可以在函数内部完成,这带来了更好的封装性、可维护性。
在必要的时候添加&
和const
关键字
在传递函数参数时,&
关键字表明了该传参方式为引用传参,区别于普通传参,引用传参方式使得函数无需在其内部拷贝一个副本,而是可以直接在原变量上进行操作。无需拷贝副本显著降低了程序的性能开销。
对于普通传参,const
关键字表明内部拷贝的副本为常变量。对于引用传参,const
关键字表明该函数不具有修改该变量的权限,只具备读取(访问)的权限。
三角方程组
下三角方程组
\[\begin{bmatrix} a_{11} &&&\\ a_{21} & a_{22} &&\\ \vdots&&\ddots&\\ a_{n1} & a_{n2} &\cdots &a_{nn}\\ \end{bmatrix} \begin{bmatrix} x_1\\x_2\\\vdots\\x_n \end{bmatrix}= \begin{bmatrix} b_1\\b_2\\\vdots\\b_n \end{bmatrix} \]
解法:前代法(Forward substitution)
\[\begin{cases} x_1 = b_1/a_{11}\\ x_2 = (b_2-a_{21}x_1)/a_{22}\\ \cdots\\ x_i = (b_i-\sum_{j=1}^{i-1}a_{ij}x_j)/a_{ii}, i=1,2,\cdots,n \end{cases} \]
下三角矩阵判断
**Eigen
**库并没有提供直接的判断矩阵是否为下三角矩阵的方法,因此采用了如下的判断方法:
- 首先提取矩阵的严格上三角部分(不包含对角线)
- 判断其是否全部为零,如果严格上三角部分全部为零,那么其为下三角矩阵
前代法求解
- 检查输入尺寸是否匹配
- 判断系数矩阵是否为下三角矩阵
- 采用前代法求解。
\[\begin{align*} x_i = (b_i-\sum_{j=1}^{i-1}a_{ij}x_j)/a_{ii}, i=1,2,\cdots,n \tag{2.1} \end{align*} \]
外层循环用于遍历解向量\(x\)的每个元素,从下标0
开始,遍历至下标n-1
结束。循环内部分布实现式\((2.1)\)的计算,对于求和部分,嵌套内层循环实现。
矩阵/向量元素访问
在访问矩阵/向量的元素时元素,采用括号运算符进行访问。
C++
#include "check.h"
bool isLowerTriangular(const Eigen::MatrixXd& A) {
// 获取矩阵的严格上三角部分(不包括对角线)
Eigen::MatrixXd upperTriangularPart = A.triangularView<Eigen::StrictlyUpper>();
// 检查严格上三角部分是否全为零
return upperTriangularPart.isZero();
}
void forward_substitution(const Eigen::MatrixXd& A,
const Eigen::VectorXd& b,
Eigen::VectorXd& x)
{
// 检查尺寸是否匹配
size_check(A, b, x);
// 判断系数矩阵是否为下三角矩阵
if (!isLowerTriangular(A)) {
throw std::invalid_argument("Error: The matrix is not lower triangular.");
}
for (size_t i = 0; i < A.rows(); ++i) {
x(i) = b(i);
for (size_t j = 0; j + 1 <= i; ++j) { // j < i - 1
x(i) -= A(i, j) * x(j);
}
x(i) /= A(i, i);
}
}
注意事项
应当注意C++中的数组索引是从
0
开始的,**Eigen
**库也沿用了这一习惯。
在求和\(\sum_{j=1}^{i-1}a_{ij}x_j\)的实现中,很容易错误的使用j<=i-1
作为循环的终止条件,这实际上有一个风险,当i=0
的时候,i-1
并不是-1,而是最大的size_t
类型的数,这将导致终止条件错误,因此,应当用j+1<=i
上三角方程组
\[\begin{bmatrix} a_{11} & a_{12} &\cdots &a_{1n}\\ & a_{22} &\cdots &a_{2n}\\ &&\ddots&\vdots\\ &&&a_{nn}\\ \end{bmatrix} \begin{bmatrix} x_1\\x_2\\\vdots\\x_n \end{bmatrix}= \begin{bmatrix} b_1\\b_2\\\vdots\\b_n \end{bmatrix} \]
解法:回代法(Back substitution)
\[\begin{cases} x_n = b_n/a_{nn}\\ x_{n-1} = (b_{n-1}-a_{n-1,n}x_n)/a_{n-1,n-1}\\ \cdots\\ x_i = (b_i-\sum_{j=1}^{i-1}a_{ij}x_j)/a_{ii}, i=n,n-1,\cdots,1 \end{cases} \]
上三角矩阵判断
**Eigen
**库并没有提供直接的判断矩阵是否为上三角矩阵的方法,因此采用了如下的判断方法:
- 首先提取矩阵的严格下三角部分(不包含对角线)
- 判断其是否全部为零,如果严格下三角部分全部为零,那么其为上三角矩阵
回代法求解
- 检查输入尺寸是否匹配
- 判断系数矩阵是否为上三角矩阵
- 采用回代法求解。
\[\begin{align*} x_i = (b_i-\sum_{j=1}^{i-1}a_{ij}x_j)/a_{ii}, i=n,n-1,\cdots,1 \tag{2.2} \end{align*} \]
外层循环用于遍历解向量\(x\)的每个元素,从下标n-1
开始,遍历至下标0
结束。循环内部分布实现式\((2.2)\)的计算,对于求和部分,嵌套内层循环实现。
C++
bool isUpperTriangular(const Eigen::MatrixXd& A) {
// 获取矩阵的严格下三角部分(不包括对角线)
Eigen::MatrixXd lowerTriangularPart = A.triangularView<Eigen::StrictlyLower>();
// 检查严格下三角部分是否全为零
return lowerTriangularPart.isZero();
}
void back_substitution(const Eigen::MatrixXd& A,
const Eigen::VectorXd& b,
Eigen::VectorXd& x)
{
// 检查尺寸是否匹配
size_check(A, b, x);
// 判断系数矩阵是否为上三角矩阵
if (!isUpperTriangular(A)) {
throw std::invalid_argument("Error: The matrix is not upper triangular.");
}
size_t n = A.rows();
for (size_t i = n - 1; i != size_t(-1); --i) { // i != -1
x(i) = b(i);
for (size_t j = i + 1; j <= n - 1; ++j) {
x(i) -= A(i, j) * x(j);
}
x(i) /= A(i, i);
}
}
注意事项
外层循环的遍历是从下标
n-1
开始,遍历至下标0
结束;一般习惯性的写法是,以i>=0
作为实际条件,但应当注意,size_t
类型是非负的,事实上,对于size_t
类型的变量,当其值为0
时再做-1
,其值为size_t(-1)
,因此,可以采用i!=size_t(-1)
作为截止条件
高斯消元法
一般高斯消元法
高斯消元法 (Gaussian Elimination)是一种用于求解线性方程组的经典方法。它通过逐步消去未知数,将方程组化为上三角形式,然后通过回代法求解未知数。高斯消元法主要分为两个步骤:前向消元和后向回代,本文中将以前向消元为例展开讨论。
前向消元(Forward Elimination)
前向消元法是从第一列开始,通过一些列的行变换,逐渐将原矩阵变换为一个上三角矩阵。假定矩阵的尺寸为\(N*N\),那么高斯消元法需要进行\(N-1\)次,在第\(i\)时执行如下操作:
- 选择主元:选择第\(i\)列的元素\(A_{i,i}\)作为主元
- 消去操作:通过将第\(i\)行的适当倍数加到其他行,使得当前列的其它元素变为零。
消去操作的公式如下:
\[\begin{cases} m_{ik}&={a_{ik}^{(k)}}/{a_{kk}^{(k)}}\\ a_{ij}^{(k+1)}&=a_{ij}^{(k)}-m\cdot a_{kj}^{(k)}\\ b_{i}^{(k+1)}&=b_{i}^{(k)}-m\cdot b_{k}^{(k)}\\ k=1,2,\dots,n-1\\ i,j=k+1.\dots,n \end{cases}\tag{3.1} \]
矩阵的第一步消元过程可以参考以下公式:
\[\left[ \begin{array}{cccc|c} a_{11}^{(1)} & a_{12}^{(1)} &\cdots &a_{1n}^{(1)}&b_1^{(1)}\\ a_{21}^{(1)} & a_{22}^{(1)} &\cdots &a_{2n}^{(1)}&b_2^{(1)}\\ &&\cdots&&\vdots\\ a_{n1}^{(1)} & a_{n2}^{(1)} &\cdots &a_{nn}^{(1)}&b_n^{(1)}\\ \end{array} \right] \longrightarrow \left[ \begin{array}{cccc|c} a_{11}^{(1)} & a_{12}^{(1)} &\cdots &a_{1n}^{(1)}&b_1^{(1)}\\ 0 & a_{22}^{(2)} &\cdots &a_{2n}^{(2)}&b_2^{(2)}\\ &&\cdots&&\vdots\\ 0 & a_{n2}^{(2)} &\cdots &a_{nn}^{(2)}&b_n^{(2)}\\ \end{array} \right] \]
在下述程序中,采样行向量相减的方式实现高斯消元法,相较于逐个元素相减,代码更简洁易懂,易维护。
C++
void simple_gauss_elimination(Eigen::MatrixXd& A, Eigen::VectorXd& b) {
// 检查尺寸是否匹配
size_check(A, b);
size_t n = A.rows();
// 逐步消元为上三角矩阵
for (size_t k = 0; k < n - 1; ++k) {
// 提取矩阵的第k行
Eigen::VectorXd temp = A.row(k);
// 将第i列索引大于i的元素消为0
for (size_t i = k + 1; i < n; ++i) {
// 计算比值
double m = A(i, k) / A(k, k);
// 消元
A.row(i) -= m * temp;
b(i) -= m * b(k);
}
}
}
改进的高斯消元法
若\(a^{(k)}{kk}\to 0\),则\(m=a{ik}^{(k)}/a_{kk}^{(0)}\to\infty\),此时直接用高斯消元法求解线性方程组是会由于舍入误差的扩大,而导致解失真。
因此在原高斯消元法的基础上,可以做改进,新增主元的选择过程,该方法称为列主元法,具体流程如下:
- 寻找第\(k\)列中第\(k\)行到第\(n\)行最大的元素,记为\(a_{jk}\)
\[\text{pivot}=\max_{k\leq i\leq n}\big|A(i,k)\big| \]
- 将第\(j\)行与第\(k\)行交换
- 进行高斯消元法
C++
void gauss_elimination(Eigen::MatrixXd& A, Eigen::VectorXd& b) {
// 检查尺寸是否匹配
size_check(A, b);
size_t n = A.rows();
// 逐步消元为上三角矩阵
for (size_t k = 0; k < n; ++k) {
// 选择主元
size_t j = k;
double max = abs(A(j, k));
for (size_t i = k + 1; i < n; ++i) {
double d = abs(A(i, k));
if (d > max) { // 选择绝对值最大的元素
j = i; max = d;
}
}
// 交换主元
if (j != k) {
Eigen::VectorXd temp = A.row(j);
A.row(j) = A.row(k);
A.row(k) = temp;
double temp_b = b(j);
b(j) = b(k);
b(k) = temp_b;
}
// 将第i列索引大于i的元素消为0
for (size_t i = k + 1; i < n; ++i) {
// 计算比值
double m = A(i, k) / A(k, k);
// 消元
A.row(i) -= m * A.row(k);
b(i) -= m * b(k);
}
}
}
注意事项
对方程\(Ax=b\)的系数矩阵\(A\)和常向量\(b\)同时做行变换时,方程的解\(x\)不变。
基于高斯消元法的一般线性方程求解
对于一般的线性方程组,可以先用高斯消元法将系数矩阵转化为上三角矩阵,再通过回代法求解。
C++
void gauss_solve(Eigen::MatrixXd A,
Eigen::VectorXd b,
Eigen::VectorXd& x)
{
// 检查尺寸是否匹配
size_check(A, b, x);
// 高斯消元法转为上三角矩阵
gauss_elimination(A, b);
// 通过回代法求解
back_substitution(A, b, x);
}
注意事项
切忌舍本逐末,虽然添加引用修饰符可以一定程度上提升性能,但是这会导致稀疏矩阵\(A\)和常向量\(b\)被修改,而用户往往容易忽略这一点,因此为了保证安全性 ,此处不使用引用传参。
截止到目前,对系数矩阵\(A\)为下三角形矩阵的线性方程组有两种求解方法,一种是采用前代法 ,一种是采用高斯消元结合回代法 ,在附录中我们对同一组数据采用两种方法分别计算结果,进行交叉验证。
附录
功能测试方法
构建函数(方法)的测试程序流程如下:
- 从函数(方法)的名称中提取缩写,作为名声空间的前缀
- 定义测试函数,命名为
test()
,如果需要可以设计多个,例如:test1()
,test2()
- 实现测试函数,一般来说,有以下步骤:①生成数据,②调用方法,③打印数据以及结果
- 在主函数中,调用该名声空间下的测试函数
test()
,一般需要使用try-catch
结构
示例代码如下:
C++
namespace SMP{
void test() {
std::cout << "Hello World!";
}
}
int main() {
try{
SMP::test();
}
catch (const std::exception& e) {
std::cerr << "Error: " << e.what() << std::endl;
}
}
在后续的附录内容中,将省略main
函数的设计,读者只需按照上述方法调用即可。
前代法测试
C++
namespace FWD{
// test for forward_substitution()
void test() { // 矩阵的阶数
const size_t order = 5;
// 定义系数矩阵 A
Eigen::MatrixXd A(order, order);
// 定义常向量 b
Eigen::VectorXd b(order);
// 定义解向量 x
Eigen::VectorXd x(order);
// 设置矩阵为随机数
A.setRandom();
b.setRandom();
// 处理为方便手算的数字
A = (1.5 + A.array()) * 2;;
b *= 10;
A = A.array().round().matrix();
b = b.array().round().matrix();
// 将严格上三角部分设置为零,使其成为下三角矩阵
A.triangularView<Eigen::StrictlyUpper>().setZero();
// 前代法
forward_substitution(A, b, x);
// 输出结果
std::cout << "A=\n" << A << "\n";
std::cout << "b=\n" << b << "\n";
std::cout << "x=\n" << x << "\n";
}
}
效果展示
程序的输出如下图所示(经过拼接),经检验,该计算结果正确(读者感兴趣的可以手算一下试试)。
回代法测试
C++
namespace BCK{
// test for back_substitution()
void test() { // 矩阵的阶数
const size_t order = 5;
// 定义系数矩阵 A
Eigen::MatrixXd A(order, order);
// 定义常向量 b
Eigen::VectorXd b(order);
// 定义解向量 x
Eigen::VectorXd x(order);
// 设置矩阵为随机数
A.setRandom();
b.setRandom();
// 处理为方便手算的数字
A = (1.5 + A.array()) * 2;;
b *= 10;
A = A.array().round().matrix();
b = b.array().round().matrix();
// 将严格下三角部分设置为零,使其成为上三角矩阵
A.triangularView<Eigen::StrictlyLower>().setZero();
// 回代法
back_substitution(A, b, x);
// 输出结果
std::cout << "A=\n" << A << "\n";
std::cout << "b=\n" << b << "\n";
std::cout << "x=\n" << x << "\n";
}
}
效果展示
程序的输出如下图所示(经过拼接),经检验,该计算结果正确.
一般高斯消元法测试
namespace S_GSE {
// test for simple_gauss_elimination
void test() { // 矩阵的阶数
const size_t order = 5;
// 定义系数矩阵 A
Eigen::MatrixXd A(order, order);
// 定义常向量 b
Eigen::VectorXd b(order);
// 设置矩阵为随机数
A.setRandom();
b.setRandom();
// 调整显示精度为小数点后两位
std::cout << std::fixed << std::setprecision(2);
// 输出消元前矩阵
std::cout << "A=\n" << A << "\n";
std::cout << "b=\n" << b << "\n";
// 前代法
simple_gauss_elimination(A, b);
// 输出消元后矩阵
std::cout << "A=\n" << A << "\n";
std::cout << "b=\n" << b << "\n";
}
}
效果展示
程序的输出如下图所示(经过拼接),显示精度为小数点后两位;经检验,该计算结果正确.
列主元法改进的高斯消元法测试
C++
namespace GSE {
// test for simple_gauss_elimination
void test() { // 矩阵的阶数
const size_t order = 5;
// 定义系数矩阵 A
Eigen::MatrixXd A(order, order);
// 定义常向量 b
Eigen::VectorXd b(order);
// 设置矩阵为随机数
A.setRandom();
b.setRandom();
// 调整显示精度为小数点后两位
std::cout << std::fixed << std::setprecision(2);
// 输出消元前矩阵
std::cout << "A=\n" << A << "\n";
std::cout << "b=\n" << b << "\n";
// 前代法
gauss_elimination(A, b);
// 输出消元后矩阵
std::cout << "A=\n" << A << "\n";
std::cout << "b=\n" << b << "\n";
}
}
程序的输出如下图所示(经过拼接),显示精度为小数点后两位;经检验,该计算结果正确.
高斯+回代法求解
C++
namespace GS_SOLVE{
void test1() {
const size_t order = 5;
Eigen::MatrixXd A(order, order);
Eigen::VectorXd b(order);
Eigen::VectorXd x(order);
// 设置矩阵为随机数
A.setRandom();
b.setRandom(); b = (1.0 + b.array()) * 5;
// 前代法
gauss_solve(A, b, x);
// 输出结果
std::cout << std::fixed << std::setprecision(2);
std::cout << "A=\n" << A << "\n";
std::cout << "b=\n" << b << "\n";
std::cout << "x=\n" << x << "\n";
}
void test2() {
const size_t order = 5;
Eigen::MatrixXd A(order, order);
Eigen::VectorXd b(order);
Eigen::VectorXd x1(order);
Eigen::VectorXd x2(order);
// 设置矩阵为随机数
A.setRandom();
b.setRandom(); b = (1.0 + b.array()) * 5;
// 将上三角部分设置为零,使其成为下三角矩阵
A.triangularView<Eigen::StrictlyUpper>().setZero();
// 高斯
gauss_solve(A, b, x1);
// 前代法
forward_substitution(A, b, x2);
// 输出结果
std::cout << std::fixed << std::setprecision(2);
std::cout << "GS_solve:\n" << "x1=\n" << x1 << "\n";
std::cout << "back_stt:\n" << "x2=\n" << x2 << "\n";
}
}
测试1
函数GS_SOLVE::test1()
用于测试高斯求解是否能够正常工作,该程序的输出如下图所示(经过拼接),显示精度为小数点后两位;经检验,该计算结果正确.
测试2
函数GS_SOLVE::test2()
采用交叉验证法,分别采用前代法 ,一种是采用高斯消元结合回代法 求解系数矩阵\(A\)为下三角矩阵的线性方程组,并对比计算结果;经检验,结果各方面功能正常。