YOLO系列论文综述(从YOLOv1到YOLOv11)【第2篇:YOLO系列论文、代码和主要优缺点汇总】

目录

YOLOv1

  • 发表日期:2016年6月
  • 作者:Joseph Redmon, Santosh Divvala, Ross Girshick, Ali Farhadi
  • 论文You Only Look Once: Unified, Real-Time Object Detection
  • 代码https://pjreddie.com/darknet/yolo/
  • 主要优缺点
    • YOLO的简单结构,加上其新颖的全图像单次回归,使其比现有的物体检测器快得多,允许实时性能。
    • 然而,虽然YOLO的表现比任何物体检测器都快,但与最先进的方法如快速R-CNN相比,定位误差更大。造成这种限制的主要原因有三个:
      • 在网格单元中最多只能检测到两个相同类别的物体,限制了预测附近物体的能力;
      • 在预测训练数据中未见的长宽比物体时很吃力;
      • 由于下采样层,只能从粗略的物体特征中学习。

YOLOv2 (YOLO9000)


YOLOv3

  • 发表日期:2018年4月
  • 作者:Joseph Redmon, Ali Farhadi
  • 论文YOLOv3: An Incremental Improvement
  • 代码https://pjreddie.com/darknet/yolo/
  • 主要优缺点
    • 使用Darknet-53作为主干网络,结合残差网络提高检测精度;
    • 引入多尺度预测来改善对小物体的检测;
    • 取消软分类器,使用独立的二元分类器提高模型性能。

YOLOv4


YOLOv5

  • 发布日期:2020年6月
  • 作者:Glenn Jocher
  • 论文:无
  • 代码https://github.com/ultralytics/yolov5
  • 主要优缺点
    • 使用Pytorch框架,便于开发者使用和扩展;
    • 自适应的anchor box学习机制提高检测效率;
    • 提供多种尺寸的预训练模型满足不同场景需求。

YOLOv6

  • 发表日期:2022年6月
  • 作者:Chuyi Li等人,美团技术团队
  • 论文YOLOv6: A Single-Stage Object Detection Framework for Industrial Applications
  • 代码https://github.com/meituan/YOLOv6
  • 主要优缺点
    • 使用基于RepVGG的新骨干网络(EfficientRep),比之前的YOLO骨干网络使用了更高的并行度;
    • 标签分配策略采用TOOD中提出的任务对齐学习方法进行标签分配;
    • 使用了变焦损失(VariFocal loss)作为分类损失,以及SIoU/GIoU作为回归损失;
    • 为回归和分类任务引入了自蒸馏策略;
    • 通过使用RepOptimizer和通道级蒸馏的检测量化方案来实现更快的检测器;
    • 这些新特性共同作用,旨在提高模型性能、加速推理过程,并在保持准确性的同时提升效率。

YOLOv7


YOLOv8

  • 发布日期:2023年1月
  • 作者:Ultralytics团队
  • 论文:无
  • 代码https://github.com/ultralytics/ultralytics
  • 主要优缺点
    • 提供可定制的模块化设计方便用户根据需求进行扩展;
    • 内置多种训练和超参数优化策略简化模型调优过程;
    • 集成检测、分割和跟踪功能。

YOLOv9


YOLOv10


YOLOv11

  • 发布日期:2024年9月
  • 作者:Ultralytics团队
  • 论文:无
  • 代码https://github.com/ultralytics/ultralytics
  • 主要优缺点
    • YOLOv11是在YOLOv8基础上进行了改进,同等精度下参数量降低20%,在速度和准确性方面具有无与伦比的性能;
    • 其流线型设计使其适用于各种应用,并可轻松适应从边缘设备到云 API 等不同硬件平台,使其成为各种物体检测与跟踪、实例分割、图像分类和姿态估计任务的绝佳选择。
相关推荐
Shawn_Shawn3 小时前
mcp学习笔记(一)-mcp核心概念梳理
人工智能·llm·mcp
33三 三like5 小时前
《基于知识图谱和智能推荐的养老志愿服务系统》开发日志
人工智能·知识图谱
芝士爱知识a5 小时前
【工具推荐】2026公考App横向评测:粉笔、华图与智蛙面试App功能对比
人工智能·软件推荐·ai教育·结构化面试·公考app·智蛙面试app·公考上岸
音沐mu.6 小时前
【55】玉米病虫害数据集(有v5/v8模型)/YOLO玉米病虫害检测
yolo·目标检测·数据集·玉米病虫害检测·玉米病虫害数据集
腾讯云开发者6 小时前
港科大熊辉|AI时代的职场新坐标——为什么你应该去“数据稀疏“的地方?
人工智能
工程师老罗7 小时前
YoloV1数据集格式转换,VOC XML→YOLOv1张量
xml·人工智能·yolo
yLDeveloper7 小时前
从模型评估、梯度难题到科学初始化:一步步解析深度学习的训练问题
深度学习
Coder_Boy_7 小时前
技术让开发更轻松的底层矛盾
java·大数据·数据库·人工智能·深度学习
啊森要自信7 小时前
CANN ops-cv:面向计算机视觉的 AI 硬件端高效算子库核心架构与开发逻辑
人工智能·计算机视觉·架构·cann