set up RAGFlow on your Mac

个人思考:这些仅仅是工具,和人的思维实际还是有很大差距。

可能是我认知片面,你需要投喂大量的内容给它,它自己其实并不会思考,只是从它的认知里告诉它他知道的东西。举个不太巧当的例子,和以往的方式恰恰相反,以往都是先有内容 再吸引流量,而现在是现有架子 再往里填充内容。架子好找,内容难求。

To set up RAGFlow on your Mac, follow these general steps:

Prerequisites:

  1. Hardware Requirements:

    • CPU: At least 4 cores.
    • RAM: Minimum 16 GB.
    • Disk space: At least 50 GB.
  2. Software Requirements:

    • Install Docker Desktop on macOS, ensuring Docker >= 24.0.0 and Docker Compose >= v2.26.1.

    • Make sure the

      复制代码
      vm.max_map_count

      is set to at least

      复制代码
      262144

      . You can check and update this using:

      bash 复制代码
      sysctl vm.max_map_count
      sudo sysctl -w vm.max_map_count=262144

      To make this change permanent, edit

      复制代码
      /etc/sysctl.conf

      and add

      复制代码
      vm.max_map_count=262144

      .

Installation:

  1. Clone the RAGFlow Repository:

    bash 复制代码
    git clone https://github.com/infiniflow/ragflow.git
    cd ragflow/docker
  2. Configure Docker Image:

    • Edit the docker/.env file to specify the RAGFlow Docker image version.
    • For a lightweight setup, use the slim image: RAGFLOW_IMAGE=infiniflow/ragflow:dev-slim.
    • For a full-featured image with embedding models, use: RAGFLOW_IMAGE=infiniflow/ragflow:dev.
  3. Start the Server: Run the following command to build and start the server:

    bash 复制代码
    docker compose -f docker-compose.yml up -d
  4. Verify Setup: Check the server logs to ensure it started successfully:

    bash 复制代码
    docker logs -f ragflow-server

    If successful, you should see a message indicating the server is running at http://127.0.0.1:9380.

Post-Installation:

  • Access the RAGFlow web interface at http://127.0.0.1:9380.
  • Configure the models and embedding settings in the system interface.

For further details and updates, check the RAGFlow GitHub repository and the official documentation.

相关推荐
墨风如雪1 天前
腾讯KaLM-Embedding:AI多语言理解的全球新篇章
aigc
win4r1 天前
🚀微调的力量:看3B参数的DeepSeek-OCR如何蜕变为中文识别高手!零成本微调保姆级教程:用Google Colab免费GPU,十分钟打造一个专属领域的
aigc·openai·deepseek
狠活科技1 天前
Claude Code 重大更新:支持一键原生安装,彻底别了 Node.js
人工智能·aigc·ai编程·claude·claude code
用户8150916072601 天前
【AI绘图新手必看】Nano Banana实战教学:从提示词到画面构图!
aigc·gemini
葡萄城技术团队1 天前
从混沌中见你所见——文生图的逆向浪漫
aigc
离开地球表面_991 天前
AIGC时代的必备技能--Prompt工程
llm·aigc
倔强的石头_2 天前
WeaveFox 深度体验:AI 时代的全栈开发神器,让创意秒变现实
aigc·ai编程
Mintopia2 天前
☁️ Cloud Code 模型演进的优势:从“本地编译”到“云端智能协作”
前端·人工智能·aigc
Mintopia2 天前
🤖 AIGC与人类协作:Web内容生产的技术分工新范式
前端·javascript·aigc
doubao362 天前
如何有效降低AIGC生成内容被识别的概率?
人工智能·深度学习·自然语言处理·aigc·ai写作