Flink CDC

Flink CDC(Change Data Capture,变更数据捕获)是一种技术,它允许实时地捕获和处理数据库中的变化。通过 Flink CDC,可以从支持的数据库中读取更改记录(如插入、更新、删除操作),并将这些更改流式传输到其他系统或进行实时分析。这项技术对于构建实时数据管道、实现数据同步以及维护多个数据源之间的一致性非常有用。

Flink CDC 主要依赖于数据库的日志功能来捕获数据的变化。例如,MySQL 和 PostgreSQL 等关系型数据库提供了二进制日志(binlog)和逻辑复制槽(replication slot)等功能,这些功能可以记录所有对数据库表所做的更改。Flink CDC 连接器会读取这些日志,并将它们转换为变更事件,然后可以在 Flink 流处理应用程序中使用这些事件。

主要组件

  • Source Connector (来源连接器) : 负责从数据库读取变更日志并将其转换为变更事件。例如,Flink MySQL CDC 是一个专门用于与 MySQL 数据库一起使用的连接器。

  • Debezium: 一种流行的开源工具,被 Flink CDC 使用来捕获来自不同数据库的数据变更。Debezium 提供了对多种数据库的支持,并且是 Apache Kafka Connect 的一部分,但也可以独立使用或与其他系统集成,如 Flink。

  • Sink Connector (接收连接器): 将变更事件写入目标系统,比如另一个数据库、消息队列、文件系统等。

使用场景

  1. 实时数据仓库:通过捕获源系统的变更,可以实时地将最新数据加载到数据仓库中。
  2. 多活数据库同步:在不同的地理区域或数据中心之间保持数据库副本的一致性。
  3. 缓存更新:当数据库发生变化时,自动更新应用层的缓存以确保数据的一致性。
  4. ETL/ELT 流程:作为 ETL(Extract, Transform, Load)或 ELT(Extract, Load, Transform)流程的一部分,实现实时数据转换和加载。
  5. 审计和合规性:跟踪所有的数据变更历史,有助于满足法规要求。

实现步骤

  1. 配置 Source Connector:根据所使用的数据库类型选择合适的 Flink CDC 连接器,并配置必要的参数,如数据库连接信息、表名模式等。
  2. 启动 Flink Job:编写并提交包含 CDC Source Connector 的 Flink 作业,开始监听数据库的变更。
  3. 处理变更事件:在 Flink 中定义如何处理收到的变更事件,比如过滤、聚合或者转换。
  4. 配置 Sink Connector:指定如何将处理后的变更事件发送到目标系统。

Flink CDC 是构建高效、低延迟数据处理管道的重要组成部分,特别是在需要保证数据一致性和实时性的应用场景中。随着 Flink 生态系统的不断发展,CDC 功能也在持续增强,支持更多的数据库和技术栈。

相关推荐
IvanCodes30 分钟前
MySQL 数据库备份与还原
大数据·数据库·sql·mysql
渣渣盟2 小时前
Flink流处理:多源传感器数据实时处理,基于Scala使用Flink从不同数据源(集合、文件、Kafka、自定义 Source)读取传感器数据
flink·kafka·scala
小伍_Five2 小时前
spark数据处理练习题详解【下】
java·大数据·spark·scala
你的坚持终将美好,2 小时前
elasticsearch kibana ik 各版本下载
大数据·elasticsearch·搜索引擎
Pluto_CSND3 小时前
hbase shell的常用命令
大数据·数据库·hbase
API_technology3 小时前
阿里巴巴 1688 数据接口开发指南:构建自动化商品详情采集系统
大数据·运维·数据挖掘·自动化
菠萝崽.4 小时前
Elasticsearch进阶篇-DSL
大数据·分布式·elasticsearch·搜索引擎·全文检索·jenkins·springboot
L耀早睡6 小时前
Spark缓存
大数据·数据库·spark
461K.6 小时前
写spark程序数据计算( 数据库的计算,求和,汇总之类的)连接mysql数据库,写入计算结果
大数据·分布式·spark
caihuayuan47 小时前
鸿蒙AI开发:10-多模态大模型与原子化服务的集成
java·大数据·sql·spring·课程设计