先验地图--slam学习笔记

先验信息 (Prior Information)

先验信息指的是在收集新数据之前已有的知识或假设。这种信息可以来自之前的实验、历史数据、理论模型或专家意见。

  1. 地图信息:在无人驾驶中,车辆通常会预先加载高精度地图数据,这些地图数据提供了道路布局、车道线位置、交叉口结构等信息。这些信息就是先验信息。
  2. 车辆动力学模型:车辆的动力学模型,包括车辆的物理特性(如质量、轮胎摩擦系数等),这些模型可以帮助预测车辆的行为。
  3. 行为预测模型:对于其他交通参与者的预测模型,如行人、自行车或其它车辆的行为模式,这些模型基于历史数据训练而成,用于预测未来行为。
后验信息 (Posterior Information)

后验信息是指在收集新数据之后,结合先验信息和观测数据得到的新知识或更新的假设。它是基于先验信息和当前观测数据的综合结果。

  1. 障碍物检测:当车辆检测到前方有障碍物时,它会结合先验的障碍物分类信息(如行人、车辆等)和当前的传感器数据(如激光雷达、摄像头图像)来更新障碍物的类型和位置信息。
  2. 路径规划:车辆可能基于先验的地图信息和当前的交通状况(如交通灯状态、其他车辆的位置)来调整行驶路线。
  3. 车辆定位:车辆利用GPS、IMU和视觉传感器等数据来确定其在地图上的精确位置。这里,先验的地图信息与传感器数据相结合,以获得更准确的位置估计。

例子:车辆定位
先验信息:

  1. 高精度地图数据:提供道路布局、车道线位置等信息。
  2. GPS数据:提供大致的位置信息,但精度有限。
  3. IMU数据:提供车辆的速度、加速度和姿态信息。

后验信息:

  1. 当车辆启动时,它会使用GPS数据和IMU数据来估算自己的大致位置。
  2. 随着车辆行驶,它会持续收集激光雷达和摄像头数据来识别周围的环境特征(如路缘石、标志牌等)。
  3. 车辆将这些观测数据与高精度地图数据相结合,通过滤波算法(如卡尔曼滤波或粒子滤波)来更新其位置估计。
  4. 随着时间的推移,车辆的位置估计会越来越精确,这就是后验信息。

原文链接:https://blog.csdn.net/m0_74633496/article/details/141195242

相关推荐
serve the people几秒前
tensorflow 零基础吃透:RaggedTensor 与其他张量类型的转换
人工智能·tensorflow·neo4j
serve the people7 分钟前
tensorflow 核心解析:tf.RaggedTensorSpec 作用与参数说明
人工智能·python·tensorflow
yzx99101320 分钟前
当AI握住方向盘:智能驾驶如何重新定义出行未来
人工智能
Sui_Network1 小时前
备受期待的 POP 射击游戏 XOCIETY 正式在 Epic Games Store 开启体验
人工智能·游戏·rpc·区块链·量子计算·graphql
漫长的~以后1 小时前
GPT-5.2深度拆解:多档位自适应架构如何重塑AI推理效率
人工智能·gpt·架构
爱笑的眼睛111 小时前
自动机器学习组件的深度解析:超越AutoML框架的底层架构
java·人工智能·python·ai
LCG米1 小时前
嵌入式Python工业环境监测实战:MicroPython读取多传感器数据
开发语言·人工智能·python
努力的BigJiang1 小时前
Cube-slam复现及报错解决
人工智能
ComputerInBook2 小时前
代数基本概念理解——特征向量和特征值
人工智能·算法·机器学习·线性变换·特征值·特征向量
漫长的~以后2 小时前
Edge TPU LiteRT V2拆解:1GB内存设备也能流畅跑AI的底层逻辑
前端·人工智能·edge