yolov9目标检测报错AttributeError: ‘list‘ object has no attribute ‘device‘

深度学习


文章目录


前言

yolov9运行自己训练的模型时,出现以下错误:

bash 复制代码
root@b219ae83c78f:/yolov9# python detect.py --source './data/images/horses.jpg' --img 640 --device 0 --weights runs/train/yolov9-c8/weights/best.pt --name yolov9_c_c_640_detect2
detect: weights=['runs/train/yolov9-c8/weights/best.pt'], source=./data/images/horses.jpg, data=data/coco128.yaml, imgsz=[640, 640], conf_thres=0.25, iou_thres=0.45, max_det=1000, device=0, view_img=False, save_txt=False, save_conf=False, save_crop=False, nosave=False, classes=None, agnostic_nms=False, augment=False, visualize=False, update=False, project=runs/detect, name=yolov9_c_c_640_detect2, exist_ok=False, line_thickness=3, hide_labels=False, hide_conf=False, half=False, dnn=False, vid_stride=1
YOLO 🚀 v0.1-104-g5b1ea9a Python-3.8.12 torch-1.11.0a0+b6df043 CUDA:0 (NVIDIA TITAN V, 12057MiB)

Fusing layers... 
yolov9-c summary: 604 layers, 50880768 parameters, 0 gradients, 237.6 GFLOPs
Traceback (most recent call last):
  File "detect.py", line 231, in <module>
    main(opt)
  File "detect.py", line 226, in main
    run(**vars(opt))
  File "/opt/conda/lib/python3.8/site-packages/torch/autograd/grad_mode.py", line 28, in decorate_context
    return func(*args, **kwargs)
  File "detect.py", line 102, in run
    pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
  File "/yolov9/utils/general.py", line 905, in non_max_suppression
    device = prediction.device
AttributeError: 'list' object has no attribute 'device'

File "/yolov9/utils/general.py", line 905, in non_max_suppression

这行代码错误,应该是照抄了yolov5的代码

bash 复制代码
 if isinstance(prediction, (list, tuple)):  # YOLO model in validation model, output = (inference_out, loss_out)
        prediction = prediction[0]  # select only inference output

    device = prediction.device
    mps = 'mps' in device.type  # Apple MPS
    if mps:  # MPS not fully supported yet, convert tensors to CPU before NMS
        prediction = prediction.cpu()
    bs = prediction.shape[0]  # batch size
    nc = prediction.shape[1] - nm - 4  # number of classes
    mi = 4 + nc  # mask start index
    xc = prediction[:, 4:mi].amax(1) > conf_thres  # candidates

改成以下代码,问题解决,

bash 复制代码
    if isinstance(prediction, (list, tuple)):  # YOLO model in validation model, output = (inference_out, loss_out)
        processed_predictions = []
        for pred_tensor in prediction:
            processed_tensor = pred_tensor[0]
            processed_predictions.append(processed_tensor)
        #prediction = prediction[0]  # select only inference output
        prediction = processed_predictions[0]

    device = prediction.device
    mps = 'mps' in device.type  # Apple MPS
    if mps:  # MPS not fully supported yet, convert tensors to CPU before NMS
        prediction = prediction.cpu()
    bs = prediction.shape[0]  # batch size
    nc = prediction.shape[1] - nm - 4  # number of classes
    mi = 4 + nc  # mask start index
    xc = prediction[:, 4:mi].amax(1) > conf_thres  # candidates

完美解决。

相关推荐
康语智能12 分钟前
科技赋能成长,小康AI家庭医生守护童真
人工智能·科技
WLJT12312312316 分钟前
科技赋能塞上农业:宁夏从黄土地到绿硅谷的蝶变
大数据·人工智能·科技
StarPrayers.32 分钟前
旅行商问题(TSP)(2)(heuristics.py)(TSP 的两种贪心启发式算法实现)
前端·人工智能·python·算法·pycharm·启发式算法
koo36435 分钟前
李宏毅机器学习笔记21
人工智能·笔记·机器学习
Bony-1 小时前
奶茶销售数据分析
人工智能·数据挖掘·数据分析·lstm
山烛1 小时前
YOLO v1:目标检测领域的单阶段革命之作
人工智能·yolo·目标检测·计算机视觉·yolov1
华仔AI智能体1 小时前
Qwen3(通义千问3)、OpenAI GPT-5、DeepSeek 3.2、豆包最新模型(Doubao 4.0)通用模型能力对比
人工智能·python·语言模型·agent·智能体
大千AI助手2 小时前
高斯隐马尔可夫模型:原理与应用详解
人工智能·高斯·hmm·高斯隐马尔可夫模型·ghmm·马尔科夫模型·混合高斯模型
西柚小萌新2 小时前
【深入浅出PyTorch】--6.2.PyTorch进阶训练技巧2
人工智能·pytorch·python