yolov9目标检测报错AttributeError: ‘list‘ object has no attribute ‘device‘

深度学习


文章目录


前言

yolov9运行自己训练的模型时,出现以下错误:

bash 复制代码
root@b219ae83c78f:/yolov9# python detect.py --source './data/images/horses.jpg' --img 640 --device 0 --weights runs/train/yolov9-c8/weights/best.pt --name yolov9_c_c_640_detect2
detect: weights=['runs/train/yolov9-c8/weights/best.pt'], source=./data/images/horses.jpg, data=data/coco128.yaml, imgsz=[640, 640], conf_thres=0.25, iou_thres=0.45, max_det=1000, device=0, view_img=False, save_txt=False, save_conf=False, save_crop=False, nosave=False, classes=None, agnostic_nms=False, augment=False, visualize=False, update=False, project=runs/detect, name=yolov9_c_c_640_detect2, exist_ok=False, line_thickness=3, hide_labels=False, hide_conf=False, half=False, dnn=False, vid_stride=1
YOLO 🚀 v0.1-104-g5b1ea9a Python-3.8.12 torch-1.11.0a0+b6df043 CUDA:0 (NVIDIA TITAN V, 12057MiB)

Fusing layers... 
yolov9-c summary: 604 layers, 50880768 parameters, 0 gradients, 237.6 GFLOPs
Traceback (most recent call last):
  File "detect.py", line 231, in <module>
    main(opt)
  File "detect.py", line 226, in main
    run(**vars(opt))
  File "/opt/conda/lib/python3.8/site-packages/torch/autograd/grad_mode.py", line 28, in decorate_context
    return func(*args, **kwargs)
  File "detect.py", line 102, in run
    pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
  File "/yolov9/utils/general.py", line 905, in non_max_suppression
    device = prediction.device
AttributeError: 'list' object has no attribute 'device'

File "/yolov9/utils/general.py", line 905, in non_max_suppression

这行代码错误,应该是照抄了yolov5的代码

bash 复制代码
 if isinstance(prediction, (list, tuple)):  # YOLO model in validation model, output = (inference_out, loss_out)
        prediction = prediction[0]  # select only inference output

    device = prediction.device
    mps = 'mps' in device.type  # Apple MPS
    if mps:  # MPS not fully supported yet, convert tensors to CPU before NMS
        prediction = prediction.cpu()
    bs = prediction.shape[0]  # batch size
    nc = prediction.shape[1] - nm - 4  # number of classes
    mi = 4 + nc  # mask start index
    xc = prediction[:, 4:mi].amax(1) > conf_thres  # candidates

改成以下代码,问题解决,

bash 复制代码
    if isinstance(prediction, (list, tuple)):  # YOLO model in validation model, output = (inference_out, loss_out)
        processed_predictions = []
        for pred_tensor in prediction:
            processed_tensor = pred_tensor[0]
            processed_predictions.append(processed_tensor)
        #prediction = prediction[0]  # select only inference output
        prediction = processed_predictions[0]

    device = prediction.device
    mps = 'mps' in device.type  # Apple MPS
    if mps:  # MPS not fully supported yet, convert tensors to CPU before NMS
        prediction = prediction.cpu()
    bs = prediction.shape[0]  # batch size
    nc = prediction.shape[1] - nm - 4  # number of classes
    mi = 4 + nc  # mask start index
    xc = prediction[:, 4:mi].amax(1) > conf_thres  # candidates

完美解决。

相关推荐
_Li.3 分钟前
机器学习-贝叶斯公式
人工智能·机器学习·概率论
luoganttcc5 分钟前
详细分析一下 国富论里里面 十一章 关于白银价格的 论述
人工智能
GEO AI搜索优化助手16 分钟前
生态震荡——当“摘要”成为终点,知识价值链的重塑与博弈
人工智能·搜索引擎·生成式引擎优化·ai优化·geo搜索优化
IT_陈寒16 分钟前
JavaScript 性能优化:5个被低估的V8引擎技巧让你的代码提速50%
前端·人工智能·后端
哔哩哔哩技术21 分钟前
SABER: 模式切换的混合思考模型训练范式
人工智能
baby_hua23 分钟前
20251011_Pytorch从入门到精通
人工智能·pytorch·python
لا معنى له28 分钟前
学习笔记:循环神经网络(RNN)
人工智能·笔记·学习·机器学习
桜吹雪29 分钟前
DeepSeekV3.2模型内置Agent体验
javascript·人工智能
2501_9453184933 分钟前
2025年数字化转型:AI技能+CAIE认证夯实进阶根基
人工智能
今夕资源网34 分钟前
[AI工具]Infinite Talk数字人对口型图像转视频AI工具 支持无限时长视频生成
人工智能·数字人·视频生成·ai工具·infinite talk·对口型图像转视频·无限时长