yolov9目标检测报错AttributeError: ‘list‘ object has no attribute ‘device‘

深度学习


文章目录


前言

yolov9运行自己训练的模型时,出现以下错误:

bash 复制代码
root@b219ae83c78f:/yolov9# python detect.py --source './data/images/horses.jpg' --img 640 --device 0 --weights runs/train/yolov9-c8/weights/best.pt --name yolov9_c_c_640_detect2
detect: weights=['runs/train/yolov9-c8/weights/best.pt'], source=./data/images/horses.jpg, data=data/coco128.yaml, imgsz=[640, 640], conf_thres=0.25, iou_thres=0.45, max_det=1000, device=0, view_img=False, save_txt=False, save_conf=False, save_crop=False, nosave=False, classes=None, agnostic_nms=False, augment=False, visualize=False, update=False, project=runs/detect, name=yolov9_c_c_640_detect2, exist_ok=False, line_thickness=3, hide_labels=False, hide_conf=False, half=False, dnn=False, vid_stride=1
YOLO 🚀 v0.1-104-g5b1ea9a Python-3.8.12 torch-1.11.0a0+b6df043 CUDA:0 (NVIDIA TITAN V, 12057MiB)

Fusing layers... 
yolov9-c summary: 604 layers, 50880768 parameters, 0 gradients, 237.6 GFLOPs
Traceback (most recent call last):
  File "detect.py", line 231, in <module>
    main(opt)
  File "detect.py", line 226, in main
    run(**vars(opt))
  File "/opt/conda/lib/python3.8/site-packages/torch/autograd/grad_mode.py", line 28, in decorate_context
    return func(*args, **kwargs)
  File "detect.py", line 102, in run
    pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
  File "/yolov9/utils/general.py", line 905, in non_max_suppression
    device = prediction.device
AttributeError: 'list' object has no attribute 'device'

File "/yolov9/utils/general.py", line 905, in non_max_suppression

这行代码错误,应该是照抄了yolov5的代码

bash 复制代码
 if isinstance(prediction, (list, tuple)):  # YOLO model in validation model, output = (inference_out, loss_out)
        prediction = prediction[0]  # select only inference output

    device = prediction.device
    mps = 'mps' in device.type  # Apple MPS
    if mps:  # MPS not fully supported yet, convert tensors to CPU before NMS
        prediction = prediction.cpu()
    bs = prediction.shape[0]  # batch size
    nc = prediction.shape[1] - nm - 4  # number of classes
    mi = 4 + nc  # mask start index
    xc = prediction[:, 4:mi].amax(1) > conf_thres  # candidates

改成以下代码,问题解决,

bash 复制代码
    if isinstance(prediction, (list, tuple)):  # YOLO model in validation model, output = (inference_out, loss_out)
        processed_predictions = []
        for pred_tensor in prediction:
            processed_tensor = pred_tensor[0]
            processed_predictions.append(processed_tensor)
        #prediction = prediction[0]  # select only inference output
        prediction = processed_predictions[0]

    device = prediction.device
    mps = 'mps' in device.type  # Apple MPS
    if mps:  # MPS not fully supported yet, convert tensors to CPU before NMS
        prediction = prediction.cpu()
    bs = prediction.shape[0]  # batch size
    nc = prediction.shape[1] - nm - 4  # number of classes
    mi = 4 + nc  # mask start index
    xc = prediction[:, 4:mi].amax(1) > conf_thres  # candidates

完美解决。

相关推荐
草莓熊Lotso14 分钟前
Linux 基础开发工具入门:软件包管理器的全方位实操指南
linux·运维·服务器·c++·人工智能·网络协议·rpc
IT_陈寒23 分钟前
Vue 3性能优化实战:7个关键技巧让我的应用加载速度提升50%
前端·人工智能·后端
【赫兹威客】浩哥27 分钟前
基于 YOLO11+PyQt6+OpenCV 的智能水果检测系统设计与实现
人工智能·opencv·计算机视觉
RPA机器人就用八爪鱼32 分钟前
RPA:企业数字化转型的高效自动化利器
人工智能
程序员-小李33 分钟前
基于PyTorch的动物识别模型训练与应用实战
人工智能·pytorch·python
掘金安东尼38 分钟前
AI 生成代码,从 Copilot 到 Claude Code 的全景测评
人工智能
说私域44 分钟前
基于开源链动2+1模式AI智能名片S2B2C商城小程序的赛道力构建与品牌发展研究
人工智能·小程序
喜欢吃豆2 小时前
llama.cpp 全方位技术指南:从底层原理到实战部署
人工智能·语言模型·大模型·llama·量化·llama.cpp
e6zzseo3 小时前
独立站的优势和劣势和运营技巧
大数据·人工智能
富唯智能4 小时前
移动+协作+视觉:开箱即用的下一代复合机器人如何重塑智能工厂
人工智能·工业机器人·复合机器人