yolov9目标检测报错AttributeError: ‘list‘ object has no attribute ‘device‘

深度学习


文章目录


前言

yolov9运行自己训练的模型时,出现以下错误:

bash 复制代码
root@b219ae83c78f:/yolov9# python detect.py --source './data/images/horses.jpg' --img 640 --device 0 --weights runs/train/yolov9-c8/weights/best.pt --name yolov9_c_c_640_detect2
detect: weights=['runs/train/yolov9-c8/weights/best.pt'], source=./data/images/horses.jpg, data=data/coco128.yaml, imgsz=[640, 640], conf_thres=0.25, iou_thres=0.45, max_det=1000, device=0, view_img=False, save_txt=False, save_conf=False, save_crop=False, nosave=False, classes=None, agnostic_nms=False, augment=False, visualize=False, update=False, project=runs/detect, name=yolov9_c_c_640_detect2, exist_ok=False, line_thickness=3, hide_labels=False, hide_conf=False, half=False, dnn=False, vid_stride=1
YOLO 🚀 v0.1-104-g5b1ea9a Python-3.8.12 torch-1.11.0a0+b6df043 CUDA:0 (NVIDIA TITAN V, 12057MiB)

Fusing layers... 
yolov9-c summary: 604 layers, 50880768 parameters, 0 gradients, 237.6 GFLOPs
Traceback (most recent call last):
  File "detect.py", line 231, in <module>
    main(opt)
  File "detect.py", line 226, in main
    run(**vars(opt))
  File "/opt/conda/lib/python3.8/site-packages/torch/autograd/grad_mode.py", line 28, in decorate_context
    return func(*args, **kwargs)
  File "detect.py", line 102, in run
    pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
  File "/yolov9/utils/general.py", line 905, in non_max_suppression
    device = prediction.device
AttributeError: 'list' object has no attribute 'device'

File "/yolov9/utils/general.py", line 905, in non_max_suppression

这行代码错误,应该是照抄了yolov5的代码

bash 复制代码
 if isinstance(prediction, (list, tuple)):  # YOLO model in validation model, output = (inference_out, loss_out)
        prediction = prediction[0]  # select only inference output

    device = prediction.device
    mps = 'mps' in device.type  # Apple MPS
    if mps:  # MPS not fully supported yet, convert tensors to CPU before NMS
        prediction = prediction.cpu()
    bs = prediction.shape[0]  # batch size
    nc = prediction.shape[1] - nm - 4  # number of classes
    mi = 4 + nc  # mask start index
    xc = prediction[:, 4:mi].amax(1) > conf_thres  # candidates

改成以下代码,问题解决,

bash 复制代码
    if isinstance(prediction, (list, tuple)):  # YOLO model in validation model, output = (inference_out, loss_out)
        processed_predictions = []
        for pred_tensor in prediction:
            processed_tensor = pred_tensor[0]
            processed_predictions.append(processed_tensor)
        #prediction = prediction[0]  # select only inference output
        prediction = processed_predictions[0]

    device = prediction.device
    mps = 'mps' in device.type  # Apple MPS
    if mps:  # MPS not fully supported yet, convert tensors to CPU before NMS
        prediction = prediction.cpu()
    bs = prediction.shape[0]  # batch size
    nc = prediction.shape[1] - nm - 4  # number of classes
    mi = 4 + nc  # mask start index
    xc = prediction[:, 4:mi].amax(1) > conf_thres  # candidates

完美解决。

相关推荐
无忧智库17 分钟前
未来已来:深度解析城市空中交通(UAM)垂直起降场(Vertiport)智能化配套设施建设方案(WORD)
人工智能
叫我:松哥18 分钟前
基于python强化学习的自主迷宫求解,集成迷宫生成、智能体训练、模型评估等
开发语言·人工智能·python·机器学习·pygame
2501_9449347321 分钟前
大专学历行政转型管理的必要性分析
人工智能
安全二次方security²28 分钟前
CUDA C++编程指南(7.5&6)——C++语言扩展之内存栅栏函数和同步函数
c++·人工智能·nvidia·cuda·内存栅栏函数·同步函数·syncthreads
汗流浃背了吧,老弟!31 分钟前
构建RAG系统时,如何选择合适的嵌入模型(Embedding Model)?
人工智能·python·embedding
老蒋每日coding43 分钟前
从存证到智能:当碳链架构注入AI灵魂——区块链+AI融合新范式
人工智能·区块链
DN20201 小时前
靠谱的AI销售机器人哪家好
java·人工智能·机器人
菜鸟‍1 小时前
【论文学习】重新审视面向持续图像分割的基于查询的 Transformer || 用于二分类图像分割的多视图聚合网络
人工智能·学习·计算机视觉
乌恩大侠1 小时前
AI-RAN Sionna 开发者套件
人工智能·usrp·mimo·airan·sionna
foundbug9991 小时前
正则化反演的MATLAB实现(适用于地球物理数值反演)
人工智能·matlab