pytroch环境安装-pycharm

环境介绍

安装pycharm

官网下载即可,我这里已经安装,就不演示了

安装anaconda

官网链接】点击下载

注意这一步选择just me

这一步全部勾上

打开 anaconda Prompt

输入conda create -n pytorch python==3.8

命令解释:创建一个叫pytorch(也可以取其他名字,只要不是中文的就行)的环境,其中python版本为3.8(python版本也可以根据需要指定例如3.12等)

输入conda env list

可以看到环境中除了基本的base环境,还有刚刚创建的名字为pytorch环境

输入activate pytorch

可以进入pytorch环境中去

pytorch与深度学习环境安装

检查本地环境

打开CMD窗口,输入nvidia-smi查看cuda驱动支持的最高版本cudatookkit,这个是向下兼容的

pytorch 的GPU深度学习环境安装

进入【pytorch官网】,找到之前的版本,找到1.10.1版本

通过下面这个命令,可以一次性将pytorch、cuda、cudatoolkit等工具都安装下来,如果一次下载不成功,可以多次运行,知道下载成功。

plain 复制代码
# CUDA 11.3
conda install pytorch==1.10.1 torchvision==0.11.2 torchaudio==0.10.1 cudatoolkit=11.3 -c pytorch -c conda-forge

可以通过conda list 来检查是否安装成功

额外安装使用镜像源安装sklearn

plain 复制代码
pip install sklearn==0.0 -i https://pypi.mirrors.ustc.edu.cn/simple/

打开pycharm

根据上述步骤,完成环境配置

编写main.py 测试 环境是否安装成功

测试安装

测试代码

python 复制代码
import torch

flag = torch.cuda.is_available()
print(flag) # cuda激活-返回true 安装成功

ngpu = 1
device = torch.device("cuda:0" if (torch.cuda.is_available() and ngpu > 0) else "cpu")
print(device)
print(torch.cuda.get_device_name(0))
print(torch.rand(3,3).cuda())

# 检查cuda版本
cuda_version=torch.version.cuda
print("CUDA Version:", cuda_version)

# 检查CuDNN version
cudnn_version = torch.backends.cudnn.version()
print("CUDNN Version:", cudnn_version)

这样就安装成功了

参考资料

Pytorch框架与经典卷积神经网络与实战

相关推荐
Salt_07284 小时前
DAY 36 官方文档的阅读
python·算法·机器学习·github
k***92164 小时前
Python 科学计算有哪些提高运算速度的技巧
开发语言·python
superman超哥4 小时前
仓颉条件变量深度解析与实践:解锁高效并发同步
开发语言·python·c#·仓颉
长空任鸟飞_阿康4 小时前
LangGraph 技术详解:基于图结构的 AI 工作流与多智能体编排框架
人工智能·python·langchain
love530love4 小时前
ComfyUI 升级 v0.4.0 踩坑记录:解决 TypeError: QM_Queue.task_done() 报错
人工智能·windows·python·comfyui
阿坤带你走近大数据5 小时前
Python基础知识-数据结构篇
开发语言·数据结构·python
小智RE0-走在路上5 小时前
Python学习笔记(7)--集合,字典,数据容器总结
笔记·python·学习
沃斯堡&蓝鸟5 小时前
DAY 29 异常处理
python
Direction_Wind5 小时前
抓包的使用与讲解
python
职业码农NO.15 小时前
智能体推理范式: Plan-and-Execute(规划与执行)
人工智能·python·数据分析·系统架构·知识图谱·agent·集成学习