论文笔记:Treat Visual Tokens as Text? But Your MLLM Only Needs Fewer Efforts to See

2024 10月的arxiv

1 主要idea

  • 针对多模态大模型(如LLaVA),提出了一系列高效的剪枝策略
    • 在显著降低计算开销(多达 88%)的同时,保持了模型在多模态任务中的性能表现

2 目前的问题

  • 与文本 token 相比,视觉 token 的数量往往更为庞大
    • 在 LLaVA 模型中,处理一张图像涉及超过 500 个视觉 token,而对应的文本 token 只有数十个
      • ------>计算效率低下
      • ------>视觉数据固有的空间稀疏性导致许多计算是冗余的
        • 大部分视觉 token 之间的交互权重很低,仅有邻近 token 之间的交互是关键
        • 在深层模型中,视觉 token 对文本生成的影响逐渐减弱
  • 目前的优化策略通常以牺牲模型性能为代价
    • ------>如何在保持性能的同时显著降低计算复杂度,仍是一个急需解决的

3 论文方法

4 实验

效果没怎么降,FLOP降多了

相关推荐
修复bug21 分钟前
trae.ai 编辑器:前端开发者的智能效率革命
人工智能·编辑器·aigc
掘金安东尼23 分钟前
为什么GPT-4o可以生成吉卜力风格照片,原理是什么?
人工智能
励志成为大佬的小杨42 分钟前
pytorch模型的进阶训练和性能优化
人工智能·pytorch·python
知舟不叙1 小时前
OpenCV的基础操作
人工智能·opencv·计算机视觉
果冻人工智能1 小时前
打造 AI Agent 对于中产阶级来说就是场噩梦
人工智能
MediaTea1 小时前
AI 文生图:提示词撰写技巧与示例(ChatGPT-4o 篇)
人工智能
墨绿色的摆渡人2 小时前
用 pytorch 从零开始创建大语言模型(三):编码注意力机制
人工智能·pytorch·语言模型
zm-v-159304339862 小时前
ChatGPT 与 DeepSeek:学术科研的智能 “双引擎”
人工智能·chatgpt
果冻人工智能2 小时前
美国狂奔,中国稳走,AI赛道上的龟兔之争?
人工智能