论文笔记:Treat Visual Tokens as Text? But Your MLLM Only Needs Fewer Efforts to See

2024 10月的arxiv

1 主要idea

  • 针对多模态大模型(如LLaVA),提出了一系列高效的剪枝策略
    • 在显著降低计算开销(多达 88%)的同时,保持了模型在多模态任务中的性能表现

2 目前的问题

  • 与文本 token 相比,视觉 token 的数量往往更为庞大
    • 在 LLaVA 模型中,处理一张图像涉及超过 500 个视觉 token,而对应的文本 token 只有数十个
      • ------>计算效率低下
      • ------>视觉数据固有的空间稀疏性导致许多计算是冗余的
        • 大部分视觉 token 之间的交互权重很低,仅有邻近 token 之间的交互是关键
        • 在深层模型中,视觉 token 对文本生成的影响逐渐减弱
  • 目前的优化策略通常以牺牲模型性能为代价
    • ------>如何在保持性能的同时显著降低计算复杂度,仍是一个急需解决的

3 论文方法

4 实验

效果没怎么降,FLOP降多了

相关推荐
上进小菜猪4 小时前
基于 YOLOv8 的智能车牌定位检测系统设计与实现—从模型训练到 PyQt 可视化落地的完整实战方案
人工智能
AI浩4 小时前
UNIV:红外与可见光模态的统一基础模型
人工智能·深度学习
GitCode官方4 小时前
SGLang AI 金融 π 对(杭州站)回顾:大模型推理的工程实践全景
人工智能·金融·sglang
木头左4 小时前
LSTM模型入参有效性验证基于量化交易策略回测的方法学实践
人工智能·rnn·lstm
找方案5 小时前
我的 all-in-rag 学习笔记:文本分块 ——RAG 系统的 “信息切菜术“
人工智能·笔记·all-in-rag
亚马逊云开发者5 小时前
让 AI 工作空间更智能:Amazon Quick Suite 集成博查搜索实践
人工智能
腾讯WeTest5 小时前
「低成本、高质高效」WeTest AI翻译限时免费
人工智能
Lucas555555555 小时前
现代C++四十不惑:AI时代系统软件的基石与新征程
开发语言·c++·人工智能
言之。5 小时前
Claude Code 专业教学文档
人工智能
Fuly10245 小时前
大模型架构理解与学习
人工智能·语言模型