人工智能模型多种分类角度

一.按模型架构分类

  • 深度神经网络:包含多层感知机、卷积神经网络、循环神经网络、长短期记忆网络和门控循环单元.

  • Transformer模型:如BERT、GPT系列等,基于自注意力机制,适用于处理序列数据.

  • 图神经网络:适用于处理图结构数据,如社交网络、知识图谱等.

二.按训练数据量和模型规模分类

  • 小型模型:参数量在百万以下,通常用于移动设备和边缘计算.

  • 中型模型:参数量在百万到十亿之间,适用于服务器和云计算.

  • 大型模型:参数量超过十亿,如GPT-3等,需要大量计算资源训练和使用.

三.按训练目标和任务分类

  • 监督学习模型:需要标注数据进行训练,用于分类、回归等任务.

  • 无监督学习模型:无需标注数据,可进行聚类、降维等任务.

  • 半监督学习模型:结合有标注和无标注数据训练.

  • 强化学习模型:通过与环境交互学习最优策略.

四.按模型的应用领域分类

  • 自然语言处理:包括机器翻译、文本摘要、情感分析等,相关模型如GPT、BERT等.

  • 计算机视觉:如图像识别、目标检测、图像生成等,常见模型有生成对抗网络、变分自编码器等.

  • 语音识别:如语音到文本转换、说话人识别等.

  • 推荐系统:如电子商务、视频流媒体平台的个性化推荐.

五.按模型的开放性和可访问性分类

  • 开源模型:任何人可访问和使用,如许多在GitHub上发布的模型.

  • 闭源模型:由特定公司或组织开发,不公开模型细节,如某些商业化的AI模型.

六.按模型的部署环境分类

  • 云端部署:模型运行在远程服务器上,用户通过网络交互.

  • 边缘部署:模型直接运行在用户设备上,如智能手机、IoT设备等.

相关推荐
l12345sy6 小时前
Day21_【机器学习—决策树(3)—剪枝】
决策树·机器学习·剪枝
笔触狂放6 小时前
【机器学习】综合实训(一)
人工智能·机器学习
Billy_Zuo7 小时前
人工智能机器学习——逻辑回归
人工智能·机器学习·逻辑回归
非门由也8 小时前
《sklearn机器学习——管道和复合估计器》联合特征(FeatureUnion)
人工智能·机器学习·sklearn
l12345sy8 小时前
Day21_【机器学习—决策树(1)—信息增益、信息增益率、基尼系数】
人工智能·决策树·机器学习·信息增益·信息增益率·基尼指数
非门由也8 小时前
《sklearn机器学习——管道和复合估算器》异构数据的列转换器
人工智能·机器学习·sklearn
java1234_小锋9 小时前
Scikit-learn Python机器学习 - 特征降维 压缩数据 - 特征提取 - 主成分分析 (PCA)
python·机器学习·scikit-learn
java1234_小锋9 小时前
Scikit-learn Python机器学习 - 特征降维 压缩数据 - 特征提取 - 线性判别分析 (LDA)
python·机器学习·scikit-learn
小王爱学人工智能10 小时前
快速了解迁移学习
人工智能·机器学习·迁移学习
非门由也10 小时前
《sklearn机器学习——管道和复合估算器》可视化复合估计器
人工智能·机器学习·sklearn