人工智能模型多种分类角度

一.按模型架构分类

  • 深度神经网络:包含多层感知机、卷积神经网络、循环神经网络、长短期记忆网络和门控循环单元.

  • Transformer模型:如BERT、GPT系列等,基于自注意力机制,适用于处理序列数据.

  • 图神经网络:适用于处理图结构数据,如社交网络、知识图谱等.

二.按训练数据量和模型规模分类

  • 小型模型:参数量在百万以下,通常用于移动设备和边缘计算.

  • 中型模型:参数量在百万到十亿之间,适用于服务器和云计算.

  • 大型模型:参数量超过十亿,如GPT-3等,需要大量计算资源训练和使用.

三.按训练目标和任务分类

  • 监督学习模型:需要标注数据进行训练,用于分类、回归等任务.

  • 无监督学习模型:无需标注数据,可进行聚类、降维等任务.

  • 半监督学习模型:结合有标注和无标注数据训练.

  • 强化学习模型:通过与环境交互学习最优策略.

四.按模型的应用领域分类

  • 自然语言处理:包括机器翻译、文本摘要、情感分析等,相关模型如GPT、BERT等.

  • 计算机视觉:如图像识别、目标检测、图像生成等,常见模型有生成对抗网络、变分自编码器等.

  • 语音识别:如语音到文本转换、说话人识别等.

  • 推荐系统:如电子商务、视频流媒体平台的个性化推荐.

五.按模型的开放性和可访问性分类

  • 开源模型:任何人可访问和使用,如许多在GitHub上发布的模型.

  • 闭源模型:由特定公司或组织开发,不公开模型细节,如某些商业化的AI模型.

六.按模型的部署环境分类

  • 云端部署:模型运行在远程服务器上,用户通过网络交互.

  • 边缘部署:模型直接运行在用户设备上,如智能手机、IoT设备等.

相关推荐
B站_计算机毕业设计之家15 分钟前
豆瓣电影数据采集分析推荐系统 | Python Vue Flask框架 LSTM Echarts多技术融合开发 毕业设计源码 计算机
vue.js·python·机器学习·flask·echarts·lstm·推荐算法
喵叔哟1 小时前
02-YOLO-v8-v9-v10工程差异对比
人工智能·yolo·机器学习
白日做梦Q1 小时前
Anchor-free检测器全解析:CenterNet vs FCOS
python·深度学习·神经网络·目标检测·机器学习
小白狮ww2 小时前
要给 OCR 装个脑子吗?DeepSeek-OCR 2 让文档不再只是扫描
人工智能·深度学习·机器学习·ocr·cpu·gpu·deepseek
dazzle3 小时前
机器学习算法原理与实践-入门(三):使用数学方法实现KNN
人工智能·算法·机器学习
玄同7654 小时前
Python 后端三剑客:FastAPI/Flask/Django 对比与 LLM 开发选型指南
人工智能·python·机器学习·自然语言处理·django·flask·fastapi
B站_计算机毕业设计之家4 小时前
豆瓣电影推荐系统 | Python Django Echarts构建个性化影视推荐平台 大数据 毕业设计源码 (建议收藏)✅
大数据·python·机器学习·django·毕业设计·echarts·推荐算法
啊阿狸不会拉杆4 小时前
《机器学习导论》第 5 章-多元方法
人工智能·python·算法·机器学习·numpy·matplotlib·多元方法
铁蛋AI编程实战5 小时前
MemoryLake 实战:构建超长对话 AI 助手的完整代码教程
人工智能·python·microsoft·机器学习