人工智能模型多种分类角度

一.按模型架构分类

  • 深度神经网络:包含多层感知机、卷积神经网络、循环神经网络、长短期记忆网络和门控循环单元.

  • Transformer模型:如BERT、GPT系列等,基于自注意力机制,适用于处理序列数据.

  • 图神经网络:适用于处理图结构数据,如社交网络、知识图谱等.

二.按训练数据量和模型规模分类

  • 小型模型:参数量在百万以下,通常用于移动设备和边缘计算.

  • 中型模型:参数量在百万到十亿之间,适用于服务器和云计算.

  • 大型模型:参数量超过十亿,如GPT-3等,需要大量计算资源训练和使用.

三.按训练目标和任务分类

  • 监督学习模型:需要标注数据进行训练,用于分类、回归等任务.

  • 无监督学习模型:无需标注数据,可进行聚类、降维等任务.

  • 半监督学习模型:结合有标注和无标注数据训练.

  • 强化学习模型:通过与环境交互学习最优策略.

四.按模型的应用领域分类

  • 自然语言处理:包括机器翻译、文本摘要、情感分析等,相关模型如GPT、BERT等.

  • 计算机视觉:如图像识别、目标检测、图像生成等,常见模型有生成对抗网络、变分自编码器等.

  • 语音识别:如语音到文本转换、说话人识别等.

  • 推荐系统:如电子商务、视频流媒体平台的个性化推荐.

五.按模型的开放性和可访问性分类

  • 开源模型:任何人可访问和使用,如许多在GitHub上发布的模型.

  • 闭源模型:由特定公司或组织开发,不公开模型细节,如某些商业化的AI模型.

六.按模型的部署环境分类

  • 云端部署:模型运行在远程服务器上,用户通过网络交互.

  • 边缘部署:模型直接运行在用户设备上,如智能手机、IoT设备等.

相关推荐
张祥6422889043 小时前
误差理论与测量平差基础笔记十
笔记·算法·机器学习
春日见6 小时前
自动驾驶规划控制决策知识点扫盲
linux·运维·服务器·人工智能·机器学习·自动驾驶
hjs_deeplearning6 小时前
文献阅读篇#14:自动驾驶中的基础模型:场景生成与场景分析综述(5)
人工智能·机器学习·自动驾驶
创业之路&下一个五年11 小时前
以教为学:在赋能他人中完成自我跃升
机器学习·自然语言处理·数据挖掘
机 _ 长11 小时前
YOLO26 改进 | 训练策略 | 知识蒸馏 (Response + Feature + Relation)
python·深度学习·yolo·目标检测·机器学习·计算机视觉
szcsun512 小时前
机器学习(二)-线性回归实战
人工智能·机器学习·线性回归
力学与人工智能13 小时前
“高雷诺数湍流数据库的构建及湍流机器学习集成研究”湍流重大研究计划集成项目顺利结题
数据库·人工智能·机器学习·高雷诺数·湍流·重大研究计划·项目结题
康谋自动驾驶14 小时前
高校自动驾驶研究新基建:“实测 - 仿真” 一体化数据采集与验证平台
人工智能·机器学习·自动驾驶·科研·数据采集·时间同步·仿真平台
砚边数影14 小时前
决策树实战:基于 KingbaseES 的鸢尾花分类 —— 模型可视化输出
java·数据库·决策树·机器学习·分类·金仓数据库
_ziva_14 小时前
Layer Normalization 全解析:LLMs 训练稳定的核心密码
人工智能·机器学习·自然语言处理