auto-gptq安装以及不适配软硬件环境可能出现的问题及解决方式

目录

1、auto-gptq是什么?

Auto-GPTQ 是一种专注于 量化深度学习模型 的工具库。它的主要目标是通过量化技术(Quantization)将大型语言模型(LLM)等深度学习模型的大小和计算复杂度显著减少,从而提高推理效率,同时尽可能保持模型的性能。

2、auto-gptq安装

在Linux和Windows上,AutoGPTQ可以通过预先构建的轮子为特定的PyTorch版本安装:

AutoGPTQ version CUDA/ROCm version Installation Built against PyTorch
latest (0.7.1) CUDA 11.8 pip install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/ 2.2.1+cu118
latest (0.7.1) CUDA 12.1 pip install auto-gptq 2.2.1+cu121
latest (0.7.1) ROCm 5.7 pip install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/rocm571/ 2.2.1+rocm5.7
0.7.0 CUDA 11.8 pip install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/ 2.2.0+cu118
0.7.0 CUDA 12.1 pip install auto-gptq 2.2.0+cu121
0.7.0 ROCm 5.7 pip install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/rocm571/ 2.2.0+rocm5.7
0.6.0 CUDA 11.8 pip install auto-gptq==0.6.0 --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/ 2.1.1+cu118
0.6.0 CUDA 12.1 pip install auto-gptq==0.6.0 2.1.1+cu121
0.6.0 ROCm 5.6 pip install auto-gptq==0.6.0 --extra-index-url https://huggingface.github.io/autogptq-index/whl/rocm561/ 2.1.1+rocm5.6
0.5.1 CUDA 11.8 pip install auto-gptq==0.5.1 --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/ 2.1.0+cu118
0.5.1 CUDA 12.1 pip install auto-gptq==0.5.1 2.1.0+cu121
0.5.1 ROCm 5.6 pip install auto-gptq==0.5.1 --extra-index-url https://huggingface.github.io/autogptq-index/whl/rocm561/ 2.1.0+rocm5.6

AutoGPTQ is not available on macOS.
注意:安装的auto-gptq版本必须与CUDA和pytorch版本都适配,安装完之后推理速度很慢可能是需要从源码安装

3、auto-gptq不正确安装可能会出现的问题

(1)爆出:CUDA extension not installed.

这个问题我一直以为是CUDA和pytorch没配置好,或者不适配硬件,甚至以为是没有安装cudnn的原因,但最后发现原来是安装的auto-gptq不适配当下环境。

注意按照上面的方法安装auto-gptq仍然可能报错或者不适配,此时应该从源码安装,可以参考教程AutoGPTQ/README_zh.md at main · AutoGPTQ/AutoGPTQ,或者解决 GPTQ 模型导入后推理生成 Tokens 速度很慢的问题(从源码重新安装 Auto-GPTQ)_auto gptq 源码构建非cuda版本-CSDN博客

以下摘自官方文档

克隆源码:

git clone https://github.com/PanQiWei/AutoGPTQ.git && cd AutoGPTQ

然后,从项目目录安装:

pip install .

正如在快速安装一节,你可以使用 BUILD_CUDA_EXT=0 来取消构建 cuda 拓展。

如果你想要使用 triton 加速且其能够被你的操作系统所支持,请使用 .[triton]

对应 AMD GPUs,为了从源码安装以支持 RoCm,请设置 ROCM_VERSION 环境变量。同时通过设置
PYTORCH_ROCM_ARCH

(reference)

可提升编译速度,例如:对于 MI200 系列设备,该变量可设为 gfx90a。例子:

ROCM_VERSION=5.6 pip install .

对于 RoCm 系统,在从源码安装时额外需要提前安装以下包:rocsparse-dev, hipsparse-dev,
rocthrust-dev, rocblas-dev and hipblas-dev

(2)没有报错但是推理速度超级慢

此时查看auto-gptq版本,如果版本后没有带cu1xx,则可能是需要从源码安装

相关推荐
mingchen_peng1 天前
第三章 大语言模型基础
大模型·llm·hello-agent
骚戴1 天前
深入解析:Gemini 3.0 Pro 的 SSE 流式响应与跨区域延迟优化实践
java·人工智能·python·大模型·llm
杨二K1 天前
大模型分块技术
大模型
@Wufan1 天前
ubuntu服务器子用户(无sudo权限)安装/切换多个版本cuda
linux·服务器·ubuntu·cuda
骚戴1 天前
DeepSeek V3 & Llama 3 推理避坑指南:自建 vLLM 集群 vs API 网关架构深度对比
java·人工智能·python·大模型·api·vllm
世优科技虚拟人1 天前
智慧政务从试点到普及:AI数字人一体机在政务大厅的深度应用分析
人工智能·大模型·智慧城市·数字人·政务·智慧政务·智能交互
大千AI助手1 天前
GPT-Neo:开源大型自回归语言模型的实现与影响
人工智能·gpt·机器学习·开源·大模型·大千ai助手·gpt-neo
AndrewHZ1 天前
【大模型技术学习】大模型压力测试全攻略:以Qwen3-32B为例
人工智能·大模型·llm·压力测试·模型部署·通义千问·qwen3-32b
暴风鱼划水1 天前
大型语言模型(入门篇)A
人工智能·语言模型·自然语言处理·大模型·llm
般若Neo1 天前
企业级大模型开发及应用 - 企业应用大模型的方法
大模型·大模型应用·企业级大模型