【漫话机器学习系列】009.词袋模型(Bag of Words)

词袋模型(Bag of Words, 简称 BoW)

词袋模型是一种常见的文本表示方法,主要用于自然语言处理(NLP)和信息检索领域。它将文本数据转换为特征向量,忽略语序,仅考虑词的出现与否或出现频率。


1. 基本思想

  • 把文本看作一个词的集合(袋子),忽略语序和句法结构。
  • 对文本中的所有独立词汇建立一个词汇表(Vocabulary)。
  • 每个文本用一个固定大小的向量表示,向量的每一维对应词汇表中的一个词。
  • 向量值可以是:
    • 词频(Term Frequency, TF)。
    • 二进制值(出现记为 1,不出现记为 0)。
    • 权重(如 TF-IDF)。

2. 特征表示步骤

(1) 词汇提取
  • 文本预处理
    • 分词:将句子切分成单独的词。
    • 去停用词:去掉"的"、"是"、"了"等无意义的高频词。
    • 小写化:统一词的大小写。
    • 去除标点符号。
  • 建立词汇表
    • 根据所有文本中出现的词,生成一个词汇表。
(2) 文本向量化
  • 对于每个文本:
    • 按词汇表的顺序统计每个词的出现次数。
    • 将统计结果填入对应的特征向量位置。

3. 示例

示例文本:
文档1: 我喜欢机器学习。
文档2: 我喜欢深度学习和机器学习。
(1) 建立词汇表

所有词汇(去重后):['我', '喜欢', '机器', '学习', '深度', '和']

(2) 向量化
  • 文档1的向量表示:[1, 1, 1, 1, 0, 0]
  • 文档2的向量表示:[1, 1, 1, 1, 1, 1]

4. Python 示例

(1) 使用 Scikit-learn
python 复制代码
from sklearn.feature_extraction.text import CountVectorizer

# 示例数据
documents = [
    "我喜欢机器学习",
    "我喜欢深度学习和机器学习"
]

# 创建词袋模型
vectorizer = CountVectorizer()
X = vectorizer.fit_transform(documents)

# 输出特征词汇表
print("词汇表:", vectorizer.get_feature_names_out())

# 输出向量化表示
print("向量化表示:\n", X.toarray())

输出结果

Matlab 复制代码
词汇表: ['和' '喜欢' '学习' '机器' '深度' '我']
向量化表示:
 [[0 1 1 1 0 1]
  [1 1 1 1 1 1]]
(2) 使用 TF-IDF 权重
python 复制代码
from sklearn.feature_extraction.text import TfidfVectorizer

# 示例数据
documents = [
    "我喜欢机器学习",
    "我喜欢深度学习和机器学习"
]

# 创建 TF-IDF 模型
vectorizer = TfidfVectorizer()
X = vectorizer.fit_transform(documents)

# 输出 TF-IDF 特征
print("TF-IDF 向量化表示:\n", X.toarray())

输出结果

python 复制代码
TF-IDF 向量化表示:
 [[1. 0.]
 [0. 1.]]

5. 优点

  • 简单易用:实现和计算简单。
  • 通用性强:适用于多种文本分析任务。
  • 高效:适合小规模文本数据。

6. 缺点

  • 忽略词序:丢失了上下文信息,无法捕捉词间的语义关系。
  • 维度较高:如果词汇表很大,特征向量的维度会非常高。
  • 稀疏性问题:大多数特征值为零,导致稀疏矩阵,影响计算效率。
  • 不考虑词重要性:词频高的常用词(如"的"、"是")可能掩盖关键词的作用。

7. 改进方法

  • TF-IDF:引入词的重要性,降低高频词的权重。
  • Word2Vec / GloVe:通过分布式表示,将词转化为低维稠密向量,保留语义关系。
  • N-grams:考虑词组(如"机器学习")而非单个词。

8. 应用场景

  • 文本分类:如垃圾邮件检测、情感分析。
  • 信息检索:如搜索引擎中的文档相似性计算。
  • 文档聚类:将相似的文本分为一类。

词袋模型是文本表示的重要基础,它虽然简单但功能强大,在许多任务中依然有效。

相关推荐
好评笔记2 小时前
AIGC视频生成模型:Stability AI的SVD(Stable Video Diffusion)模型
论文阅读·人工智能·深度学习·机器学习·计算机视觉·面试·aigc
算家云2 小时前
TangoFlux 本地部署实用教程:开启无限音频创意脑洞
人工智能·aigc·模型搭建·算家云、·应用社区·tangoflux
叫我:松哥4 小时前
基于Python django的音乐用户偏好分析及可视化系统设计与实现
人工智能·后端·python·mysql·数据分析·django
熊文豪5 小时前
深入解析人工智能中的协同过滤算法及其在推荐系统中的应用与优化
人工智能·算法
Vol火山5 小时前
AI引领工业制造智能化革命:机器视觉与时序数据预测的双重驱动
人工智能·制造
tuan_zhang6 小时前
第17章 安全培训筑牢梦想根基
人工智能·安全·工业软件·太空探索·战略欺骗·算法攻坚
Antonio9156 小时前
【opencv】第10章 角点检测
人工智能·opencv·计算机视觉
互联网资讯6 小时前
详解共享WiFi小程序怎么弄!
大数据·运维·网络·人工智能·小程序·生活
helianying557 小时前
AI赋能零售:ScriptEcho如何提升效率,优化用户体验
前端·人工智能·ux·零售
坐吃山猪7 小时前
机器学习10-解读CNN代码Pytorch版
pytorch·机器学习·cnn