矩阵论-第三章:矩阵的标准型

1.哈密顿-凯莱定理

定义:每个 n 阶矩阵都是它的特征多项式的根

特征多项式:f(A) = |...|=...,λ 为特征值

2. 简化运算

又因为哈密顿-凯莱定理可知,f(A) = 0,所以化简后等于 r(A)

3.例题-简化矩阵计算

定义: 当你看到需要计算一个很长的公式的时候,你就可以往哈密顿-凯莱定理 +简化计算 上思考。
方法:

  1. 利用求特征值的方法|...|得到形如 f(A) = A... 的方程。
  2. 然后将长的计算公式假设为 φ(A),然后除以 f(A),得到余项,而 f(A) 本身就等于 0 ,所以 φ(A) = 余项

    第二问求A逆
    方法: 第二问所求的 A-1,应该是一个包含 A 和 E 的表达式,我们可以利用求秩的表达式求解。------>将单独 E 想办法转到右边,A 进行提出,就能够很快速地求解 A-1 了

    第三问:求较长计算式的逆
    方法: 较长计算式一般等于余项,相当于求余项的逆,将余项往 |...| 公式里去凑即可**【凑+哈密顿-凯莱定理即可】**

4.最小多项式

概念上: 分为特征多项式(f(A)=|...|=...)、零化多项式、最小多项式;最小多项式相当于在零化多项式的基础至少,加了一个首项系数为1的条件。
特点上: 特征多项式和最小多项式的根完全一样,所以要找到最小多项式,首先得找到特征多项式,然后再加上一个条件即可。

5.例题-求最小多项式

从特征多项式------>最小多项式的关键:将矩阵代入多项式后,验证多项式的值是否为 0,为0,则证明满足最小多项式

6.Jordan 标准型

7.Smith 标准型

相关推荐
我的golang之路果然有问题35 分钟前
快速了解redis,个人笔记
数据库·经验分享·redis·笔记·学习·缓存·内存
Angindem2 小时前
SpringClound 微服务分布式Nacos学习笔记
分布式·学习·微服务
虾球xz2 小时前
游戏引擎学习第244天: 完成异步纹理下载
c++·学习·游戏引擎
BOB-wangbaohai2 小时前
Flowable7.x学习笔记(十四)查看部署流程Bpmn2.0-xml
xml·笔记·学习
先生沉默先3 小时前
c#接口_抽象类_多态学习
开发语言·学习·c#
豆芽8193 小时前
图解YOLO(You Only Look Once)目标检测(v1-v5)
人工智能·深度学习·学习·yolo·目标检测·计算机视觉
友善啊,朋友3 小时前
《普通逻辑》学习记录——性质命题及其推理
学习·逻辑学
Gsen28194 小时前
AI大模型从0到1记录学习 数据结构和算法 day20
数据结构·学习·算法·生成对抗网络·目标跟踪·语言模型·知识图谱
能来帮帮蒟蒻吗5 小时前
Docker安装(Ubuntu22版)
笔记·学习·spring cloud·docker·容器
每次的天空6 小时前
Android学习总结之Glide篇(缓存和生命周期)
android·学习·glide