矩阵论-第三章:矩阵的标准型

1.哈密顿-凯莱定理

定义:每个 n 阶矩阵都是它的特征多项式的根

特征多项式:f(A) = |...|=...,λ 为特征值

2. 简化运算

又因为哈密顿-凯莱定理可知,f(A) = 0,所以化简后等于 r(A)

3.例题-简化矩阵计算

定义: 当你看到需要计算一个很长的公式的时候,你就可以往哈密顿-凯莱定理 +简化计算 上思考。
方法:

  1. 利用求特征值的方法|...|得到形如 f(A) = A... 的方程。
  2. 然后将长的计算公式假设为 φ(A),然后除以 f(A),得到余项,而 f(A) 本身就等于 0 ,所以 φ(A) = 余项

    第二问求A逆
    方法: 第二问所求的 A-1,应该是一个包含 A 和 E 的表达式,我们可以利用求秩的表达式求解。------>将单独 E 想办法转到右边,A 进行提出,就能够很快速地求解 A-1 了

    第三问:求较长计算式的逆
    方法: 较长计算式一般等于余项,相当于求余项的逆,将余项往 |...| 公式里去凑即可**【凑+哈密顿-凯莱定理即可】**

4.最小多项式

概念上: 分为特征多项式(f(A)=|...|=...)、零化多项式、最小多项式;最小多项式相当于在零化多项式的基础至少,加了一个首项系数为1的条件。
特点上: 特征多项式和最小多项式的根完全一样,所以要找到最小多项式,首先得找到特征多项式,然后再加上一个条件即可。

5.例题-求最小多项式

从特征多项式------>最小多项式的关键:将矩阵代入多项式后,验证多项式的值是否为 0,为0,则证明满足最小多项式

6.Jordan 标准型

7.Smith 标准型

相关推荐
2pi10 分钟前
mfy学习笔记
笔记·学习
m0_709214345 小时前
20250223学习记录
学习
lx7416026985 小时前
文章精读篇——用于遥感小样本语义分割的可学习Prompt
人工智能·学习·prompt
qq_382391338 小时前
WPF框架学习
学习·wpf·1024程序员节
Aphelios38011 小时前
Linux 下 VIM 编辑器学习记录:从基础到进阶(下)
java·linux·学习·编辑器·vim
Best_Me0711 小时前
【CVPR2024-工业异常检测】PromptAD:与只有正常样本的少样本异常检测的学习提示
人工智能·学习·算法·计算机视觉
日记成书11 小时前
详细介绍STM32(32位单片机)外设应用
stm32·学习
li星野12 小时前
std::thread的同步机制
开发语言·c++·学习
技术小齐12 小时前
网络运维学习笔记 021 HCIA-Datacom新增知识点02 SDN与NFV概述
运维·网络·学习
im长街13 小时前
Ubuntu22.04 - brpc的安装和使用
学习