矩阵论-第三章:矩阵的标准型

1.哈密顿-凯莱定理

定义:每个 n 阶矩阵都是它的特征多项式的根

特征多项式:f(A) = |...|=...,λ 为特征值

2. 简化运算

又因为哈密顿-凯莱定理可知,f(A) = 0,所以化简后等于 r(A)

3.例题-简化矩阵计算

定义: 当你看到需要计算一个很长的公式的时候,你就可以往哈密顿-凯莱定理 +简化计算 上思考。
方法:

  1. 利用求特征值的方法|...|得到形如 f(A) = A... 的方程。
  2. 然后将长的计算公式假设为 φ(A),然后除以 f(A),得到余项,而 f(A) 本身就等于 0 ,所以 φ(A) = 余项

    第二问求A逆
    方法: 第二问所求的 A-1,应该是一个包含 A 和 E 的表达式,我们可以利用求秩的表达式求解。------>将单独 E 想办法转到右边,A 进行提出,就能够很快速地求解 A-1 了

    第三问:求较长计算式的逆
    方法: 较长计算式一般等于余项,相当于求余项的逆,将余项往 |...| 公式里去凑即可**【凑+哈密顿-凯莱定理即可】**

4.最小多项式

概念上: 分为特征多项式(f(A)=|...|=...)、零化多项式、最小多项式;最小多项式相当于在零化多项式的基础至少,加了一个首项系数为1的条件。
特点上: 特征多项式和最小多项式的根完全一样,所以要找到最小多项式,首先得找到特征多项式,然后再加上一个条件即可。

5.例题-求最小多项式

从特征多项式------>最小多项式的关键:将矩阵代入多项式后,验证多项式的值是否为 0,为0,则证明满足最小多项式

6.Jordan 标准型

7.Smith 标准型

相关推荐
Mixtral8 分钟前
2026年4款学习转写工具测评:告别逐字整理,自动生成复习资料
笔记·学习·ai·语音转文字
鄭郑13 分钟前
【playwright 学习笔记】原理讲解与基础操作 --- day01
笔记·学习
代码游侠1 小时前
学习笔记——时钟系统与定时器
arm开发·笔记·单片机·嵌入式硬件·学习·架构
小魏每天都学习2 小时前
【计算机基础知识学习】
学习
Nan_Shu_6142 小时前
学习: 尚硅谷Java项目之尚庭公寓(2)
学习
好奇龙猫3 小时前
【人工智能学习-AI入试相关题目练习-第九次】
人工智能·学习
zhangrelay3 小时前
影响移动固态磁盘稳定性的原因有哪些呢?
笔记·学习
棒棒的皮皮4 小时前
【深度学习】YOLO学习教程汇总
深度学习·学习·yolo·计算机视觉
詩不诉卿4 小时前
Zephyr学习之spi flash驱动记录(w25q128)
学习
yanyu-yaya5 小时前
速学兼复习之vue3章节3
前端·javascript·vue.js·学习·前端框架