数值特性库入口文件为lib.rs。该文件定义一系列数字特性的trait(特征),这些特性可以被不同的数字类型实现,从而提供一套通用的数值操作方法。下面是对代码中关键部分的解释:
一、基础设置
- #![doc(html_root_url = "https://docs.rs/num-traits/0.2")]:指定了文档的根URL,用于在线文档生成。
- #![deny(unconditional_recursion)]:禁止无条件递归,这是一种编译时检查,防止无限递归。
- #![no_std]:表明这个crate不依赖Rust标准库,使其可以在没有标准库的环境(如裸机或嵌入式系统)中使用。
二、条件编译
- #[cfg(feature = "std")]:当启用std特性时,编译这部分代码。这通常用于在有无标准库支持时提供不同的实现。
三、引入依赖
- 引入了Rust核心库中的一些基本功能,如格式化(fmt)、包装类型(Wrapping)、基本的算术操作(Add, Div, Mul, Rem, Sub等)及其赋值操作(AddAssign, DivAssign, MulAssign, RemAssign, SubAssign)。
四、公开的特性
- 通过pub use语句,公开了库中定义的一系列特性(traits)和常量,使得外部可以直接通过这些路径访问它们。例如,Bounded用于表示有边界的数字类型,Float和FloatConst提供了浮点数的操作和常量,NumCast用于类型转换等。
五、核心trait定义:
- Num:定义了数值类型的基础特性,包括比较、基本数值操作、字符串转换等。
- NumOps:为实现了基本算术运算符(+, -, *, /, %)的类型自动实现。
- NumRef和RefNum:提供了对引用类型数值操作的支持。
- NumAssignOps:为实现了赋值运算符(如+=, -=)的类型自动实现。
六、宏和模块:
- 通过#[macro_use]引入了宏定义(在macros模块中),这些宏可能用于简化代码或提供额外的功能。
- 定义了多个模块(如bounds, cast, float, identities, int, ops, pow, real, sign),每个模块都负责特定的数值操作或特性。
七、总结及源码
整体而言,这段代码定义了一个丰富的数字特性库,为Rust中的数值类型提供了一套通用的接口和操作方法。通过实现这些trait,不同的数值类型可以享受到这些通用操作带来的便利,同时也为开发者提供了一种灵活的方式来处理不同类型的数值。源码如下:
rust
//!为泛型准备的数字特征库
#![doc(html_root_url = "https://docs.rs/num-traits/0.2")]
#![deny(unconditional_recursion)]
#![no_std]
// 需要显式地将crate引入固有的float方法。Need to explicitly bring the crate in for inherent float methods
#[cfg(feature = "std")]
extern crate std;
use core::fmt;
use core::num::Wrapping;
use core::ops::{Add, Div, Mul, Rem, Sub};
use core::ops::{AddAssign, DivAssign, MulAssign, RemAssign, SubAssign};
pub use crate::bounds::Bounded; // 1 边界特性
#[cfg(any(feature = "std", feature = "libm"))]
pub use crate::float::Float; // 2
pub use crate::float::FloatConst; // 3
pub use crate::cast::{cast, AsPrimitive, FromPrimitive, NumCast, ToPrimitive}; // 4
pub use crate::identities::{one, zero, ConstOne, ConstZero, One, Zero}; // 5
pub use crate::int::PrimInt; // 6
pub use crate::ops::bytes::{FromBytes, ToBytes}; // 7
pub use crate::ops::checked::{
CheckedAdd, CheckedDiv, CheckedMul, CheckedNeg, CheckedRem, CheckedShl, CheckedShr, CheckedSub,
}; // 8
pub use crate::ops::euclid::{CheckedEuclid, Euclid}; // 9
pub use crate::ops::inv::Inv; // 10
pub use crate::ops::mul_add::{MulAdd, MulAddAssign}; // 11
pub use crate::ops::saturating::{Saturating, SaturatingAdd, SaturatingMul, SaturatingSub}; // 12
pub use crate::ops::wrapping::{
WrappingAdd, WrappingMul, WrappingNeg, WrappingShl, WrappingShr, WrappingSub,
}; // 13
pub use crate::pow::{checked_pow, pow, Pow}; // 14
pub use crate::sign::{abs, abs_sub, signum, Signed, Unsigned}; // 15
#[macro_use]
mod macros;
pub mod bounds;
pub mod cast;
pub mod float;
pub mod identities;
pub mod int;
pub mod ops;
pub mod pow;
pub mod real;
pub mod sign;
/// The base trait for numeric types, covering `0` and `1` values,
/// comparisons, basic numeric operations, and string conversion.
pub trait Num: PartialEq + Zero + One + NumOps {
type FromStrRadixErr;
/// Convert from a string and radix (typically `2..=36`).
///
/// # Examples
///
/// ```rust
/// use num_traits::Num;
///
/// let result = <i32 as Num>::from_str_radix("27", 10);
/// assert_eq!(result, Ok(27));
///
/// let result = <i32 as Num>::from_str_radix("foo", 10);
/// assert!(result.is_err());
/// ```
///
/// # Supported radices
///
/// The exact range of supported radices is at the discretion of each type implementation. For
/// primitive integers, this is implemented by the inherent `from_str_radix` methods in the
/// standard library, which **panic** if the radix is not in the range from 2 to 36. The
/// implementation in this crate for primitive floats is similar.
///
/// For third-party types, it is suggested that implementations should follow suit and at least
/// accept `2..=36` without panicking, but an `Err` may be returned for any unsupported radix.
/// It's possible that a type might not even support the common radix 10, nor any, if string
/// parsing doesn't make sense for that type.
fn from_str_radix(str: &str, radix: u32) -> Result<Self, Self::FromStrRadixErr>;
}
/// Generic trait for types implementing basic numeric operations
///
/// This is automatically implemented for types which implement the operators.
pub trait NumOps<Rhs = Self, Output = Self>:
Add<Rhs, Output = Output>
+ Sub<Rhs, Output = Output>
+ Mul<Rhs, Output = Output>
+ Div<Rhs, Output = Output>
+ Rem<Rhs, Output = Output>
{
}
impl<T, Rhs, Output> NumOps<Rhs, Output> for T where
T: Add<Rhs, Output = Output>
+ Sub<Rhs, Output = Output>
+ Mul<Rhs, Output = Output>
+ Div<Rhs, Output = Output>
+ Rem<Rhs, Output = Output>
{
}
/// The trait for `Num` types which also implement numeric operations taking
/// the second operand by reference.
///
/// This is automatically implemented for types which implement the operators.
pub trait NumRef: Num + for<'r> NumOps<&'r Self> {}
impl<T> NumRef for T where T: Num + for<'r> NumOps<&'r T> {}
/// The trait for `Num` references which implement numeric operations, taking the
/// second operand either by value or by reference.
///
/// This is automatically implemented for all types which implement the operators. It covers
/// every type implementing the operations though, regardless of it being a reference or
/// related to `Num`.
pub trait RefNum<Base>: NumOps<Base, Base> + for<'r> NumOps<&'r Base, Base> {}
impl<T, Base> RefNum<Base> for T where T: NumOps<Base, Base> + for<'r> NumOps<&'r Base, Base> {}
/// Generic trait for types implementing numeric assignment operators (like `+=`).
///
/// This is automatically implemented for types which implement the operators.
pub trait NumAssignOps<Rhs = Self>:
AddAssign<Rhs> + SubAssign<Rhs> + MulAssign<Rhs> + DivAssign<Rhs> + RemAssign<Rhs>
{
}
impl<T, Rhs> NumAssignOps<Rhs> for T where
T: AddAssign<Rhs> + SubAssign<Rhs> + MulAssign<Rhs> + DivAssign<Rhs> + RemAssign<Rhs>
{
}
/// The trait for `Num` types which also implement assignment operators.
///
/// This is automatically implemented for types which implement the operators.
pub trait NumAssign: Num + NumAssignOps {}
impl<T> NumAssign for T where T: Num + NumAssignOps {}
/// The trait for `NumAssign` types which also implement assignment operations
/// taking the second operand by reference.
///
/// This is automatically implemented for types which implement the operators.
pub trait NumAssignRef: NumAssign + for<'r> NumAssignOps<&'r Self> {}
impl<T> NumAssignRef for T where T: NumAssign + for<'r> NumAssignOps<&'r T> {}
macro_rules! int_trait_impl {
($name:ident for $($t:ty)*) => ($(
impl $name for $t {
type FromStrRadixErr = ::core::num::ParseIntError;
#[inline]
fn from_str_radix(s: &str, radix: u32)
-> Result<Self, ::core::num::ParseIntError>
{
<$t>::from_str_radix(s, radix)
}
}
)*)
}
int_trait_impl!(Num for usize u8 u16 u32 u64 u128);
int_trait_impl!(Num for isize i8 i16 i32 i64 i128);
impl<T: Num> Num for Wrapping<T>
where
Wrapping<T>: NumOps,
{
type FromStrRadixErr = T::FromStrRadixErr;
fn from_str_radix(str: &str, radix: u32) -> Result<Self, Self::FromStrRadixErr> {
T::from_str_radix(str, radix).map(Wrapping)
}
}
#[derive(Debug)]
pub enum FloatErrorKind {
Empty,
Invalid,
}
// FIXME: core::num::ParseFloatError is stable in 1.0, but opaque to us,
// so there's not really any way for us to reuse it.
#[derive(Debug)]
pub struct ParseFloatError {
pub kind: FloatErrorKind,
}
impl fmt::Display for ParseFloatError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let description = match self.kind {
FloatErrorKind::Empty => "cannot parse float from empty string",
FloatErrorKind::Invalid => "invalid float literal",
};
description.fmt(f)
}
}
fn str_to_ascii_lower_eq_str(a: &str, b: &str) -> bool {
a.len() == b.len()
&& a.bytes().zip(b.bytes()).all(|(a, b)| {
let a_to_ascii_lower = a | (((b'A' <= a && a <= b'Z') as u8) << 5);
a_to_ascii_lower == b
})
}
// FIXME: The standard library from_str_radix on floats was deprecated, so we're stuck
// with this implementation ourselves until we want to make a breaking change.
// (would have to drop it from `Num` though)
macro_rules! float_trait_impl {
($name:ident for $($t:ident)*) => ($(
impl $name for $t {
type FromStrRadixErr = ParseFloatError;
fn from_str_radix(src: &str, radix: u32)
-> Result<Self, Self::FromStrRadixErr>
{
use self::FloatErrorKind::*;
use self::ParseFloatError as PFE;
// Special case radix 10 to use more accurate standard library implementation
if radix == 10 {
return src.parse().map_err(|_| PFE {
kind: if src.is_empty() { Empty } else { Invalid },
});
}
// Special values
if str_to_ascii_lower_eq_str(src, "inf")
|| str_to_ascii_lower_eq_str(src, "infinity")
{
return Ok(core::$t::INFINITY);
} else if str_to_ascii_lower_eq_str(src, "-inf")
|| str_to_ascii_lower_eq_str(src, "-infinity")
{
return Ok(core::$t::NEG_INFINITY);
} else if str_to_ascii_lower_eq_str(src, "nan") {
return Ok(core::$t::NAN);
} else if str_to_ascii_lower_eq_str(src, "-nan") {
return Ok(-core::$t::NAN);
}
fn slice_shift_char(src: &str) -> Option<(char, &str)> {
let mut chars = src.chars();
Some((chars.next()?, chars.as_str()))
}
let (is_positive, src) = match slice_shift_char(src) {
None => return Err(PFE { kind: Empty }),
Some(('-', "")) => return Err(PFE { kind: Empty }),
Some(('-', src)) => (false, src),
Some((_, _)) => (true, src),
};
// The significand to accumulate
let mut sig = if is_positive { 0.0 } else { -0.0 };
// Necessary to detect overflow
let mut prev_sig = sig;
let mut cs = src.chars().enumerate();
// Exponent prefix and exponent index offset
let mut exp_info = None::<(char, usize)>;
// Parse the integer part of the significand
for (i, c) in cs.by_ref() {
match c.to_digit(radix) {
Some(digit) => {
// shift significand one digit left
sig *= radix as $t;
// add/subtract current digit depending on sign
if is_positive {
sig += (digit as isize) as $t;
} else {
sig -= (digit as isize) as $t;
}
// Detect overflow by comparing to last value, except
// if we've not seen any non-zero digits.
if prev_sig != 0.0 {
if is_positive && sig <= prev_sig
{ return Ok(core::$t::INFINITY); }
if !is_positive && sig >= prev_sig
{ return Ok(core::$t::NEG_INFINITY); }
// Detect overflow by reversing the shift-and-add process
if is_positive && (prev_sig != (sig - digit as $t) / radix as $t)
{ return Ok(core::$t::INFINITY); }
if !is_positive && (prev_sig != (sig + digit as $t) / radix as $t)
{ return Ok(core::$t::NEG_INFINITY); }
}
prev_sig = sig;
},
None => match c {
'e' | 'E' | 'p' | 'P' => {
exp_info = Some((c, i + 1));
break; // start of exponent
},
'.' => {
break; // start of fractional part
},
_ => {
return Err(PFE { kind: Invalid });
},
},
}
}
// If we are not yet at the exponent parse the fractional
// part of the significand
if exp_info.is_none() {
let mut power = 1.0;
for (i, c) in cs.by_ref() {
match c.to_digit(radix) {
Some(digit) => {
// Decrease power one order of magnitude
power /= radix as $t;
// add/subtract current digit depending on sign
sig = if is_positive {
sig + (digit as $t) * power
} else {
sig - (digit as $t) * power
};
// Detect overflow by comparing to last value
if is_positive && sig < prev_sig
{ return Ok(core::$t::INFINITY); }
if !is_positive && sig > prev_sig
{ return Ok(core::$t::NEG_INFINITY); }
prev_sig = sig;
},
None => match c {
'e' | 'E' | 'p' | 'P' => {
exp_info = Some((c, i + 1));
break; // start of exponent
},
_ => {
return Err(PFE { kind: Invalid });
},
},
}
}
}
// Parse and calculate the exponent
let exp = match exp_info {
Some((c, offset)) => {
let base = match c {
'E' | 'e' if radix == 10 => 10.0,
'P' | 'p' if radix == 16 => 2.0,
_ => return Err(PFE { kind: Invalid }),
};
// Parse the exponent as decimal integer
let src = &src[offset..];
let (is_positive, exp) = match slice_shift_char(src) {
Some(('-', src)) => (false, src.parse::<usize>()),
Some(('+', src)) => (true, src.parse::<usize>()),
Some((_, _)) => (true, src.parse::<usize>()),
None => return Err(PFE { kind: Invalid }),
};
#[cfg(feature = "std")]
fn pow(base: $t, exp: usize) -> $t {
Float::powi(base, exp as i32)
}
// otherwise uses the generic `pow` from the root
match (is_positive, exp) {
(true, Ok(exp)) => pow(base, exp),
(false, Ok(exp)) => 1.0 / pow(base, exp),
(_, Err(_)) => return Err(PFE { kind: Invalid }),
}
},
None => 1.0, // no exponent
};
Ok(sig * exp)
}
}
)*)
}
float_trait_impl!(Num for f32 f64);
/// A value bounded by a minimum and a maximum
///
/// If input is less than min then this returns min.
/// If input is greater than max then this returns max.
/// Otherwise this returns input.
///
/// **Panics** in debug mode if `!(min <= max)`.
#[inline]
pub fn clamp<T: PartialOrd>(input: T, min: T, max: T) -> T {
debug_assert!(min <= max, "min must be less than or equal to max");
if input < min {
min
} else if input > max {
max
} else {
input
}
}
/// A value bounded by a minimum value
///
/// If input is less than min then this returns min.
/// Otherwise this returns input.
/// `clamp_min(std::f32::NAN, 1.0)` preserves `NAN` different from `f32::min(std::f32::NAN, 1.0)`.
///
/// **Panics** in debug mode if `!(min == min)`. (This occurs if `min` is `NAN`.)
#[inline]
#[allow(clippy::eq_op)]
pub fn clamp_min<T: PartialOrd>(input: T, min: T) -> T {
debug_assert!(min == min, "min must not be NAN");
if input < min {
min
} else {
input
}
}
/// A value bounded by a maximum value
///
/// If input is greater than max then this returns max.
/// Otherwise this returns input.
/// `clamp_max(std::f32::NAN, 1.0)` preserves `NAN` different from `f32::max(std::f32::NAN, 1.0)`.
///
/// **Panics** in debug mode if `!(max == max)`. (This occurs if `max` is `NAN`.)
#[inline]
#[allow(clippy::eq_op)]
pub fn clamp_max<T: PartialOrd>(input: T, max: T) -> T {
debug_assert!(max == max, "max must not be NAN");
if input > max {
max
} else {
input
}
}
#[test]
fn clamp_test() {
// Int test
assert_eq!(1, clamp(1, -1, 2));
assert_eq!(-1, clamp(-2, -1, 2));
assert_eq!(2, clamp(3, -1, 2));
assert_eq!(1, clamp_min(1, -1));
assert_eq!(-1, clamp_min(-2, -1));
assert_eq!(-1, clamp_max(1, -1));
assert_eq!(-2, clamp_max(-2, -1));
// Float test
assert_eq!(1.0, clamp(1.0, -1.0, 2.0));
assert_eq!(-1.0, clamp(-2.0, -1.0, 2.0));
assert_eq!(2.0, clamp(3.0, -1.0, 2.0));
assert_eq!(1.0, clamp_min(1.0, -1.0));
assert_eq!(-1.0, clamp_min(-2.0, -1.0));
assert_eq!(-1.0, clamp_max(1.0, -1.0));
assert_eq!(-2.0, clamp_max(-2.0, -1.0));
assert!(clamp(::core::f32::NAN, -1.0, 1.0).is_nan());
assert!(clamp_min(::core::f32::NAN, 1.0).is_nan());
assert!(clamp_max(::core::f32::NAN, 1.0).is_nan());
}
#[test]
#[should_panic]
#[cfg(debug_assertions)]
fn clamp_nan_min() {
clamp(0., ::core::f32::NAN, 1.);
}
#[test]
#[should_panic]
#[cfg(debug_assertions)]
fn clamp_nan_max() {
clamp(0., -1., ::core::f32::NAN);
}
#[test]
#[should_panic]
#[cfg(debug_assertions)]
fn clamp_nan_min_max() {
clamp(0., ::core::f32::NAN, ::core::f32::NAN);
}
#[test]
#[should_panic]
#[cfg(debug_assertions)]
fn clamp_min_nan_min() {
clamp_min(0., ::core::f32::NAN);
}
#[test]
#[should_panic]
#[cfg(debug_assertions)]
fn clamp_max_nan_max() {
clamp_max(0., ::core::f32::NAN);
}
#[test]
fn from_str_radix_unwrap() {
// The Result error must impl Debug to allow unwrap()
let i: i32 = Num::from_str_radix("0", 10).unwrap();
assert_eq!(i, 0);
let f: f32 = Num::from_str_radix("0.0", 10).unwrap();
assert_eq!(f, 0.0);
}
#[test]
fn from_str_radix_multi_byte_fail() {
// Ensure parsing doesn't panic, even on invalid sign characters
assert!(f32::from_str_radix("™0.2", 10).is_err());
// Even when parsing the exponent sign
assert!(f32::from_str_radix("0.2E™1", 10).is_err());
}
#[test]
fn from_str_radix_ignore_case() {
assert_eq!(
f32::from_str_radix("InF", 16).unwrap(),
::core::f32::INFINITY
);
assert_eq!(
f32::from_str_radix("InfinitY", 16).unwrap(),
::core::f32::INFINITY
);
assert_eq!(
f32::from_str_radix("-InF", 8).unwrap(),
::core::f32::NEG_INFINITY
);
assert_eq!(
f32::from_str_radix("-InfinitY", 8).unwrap(),
::core::f32::NEG_INFINITY
);
assert!(f32::from_str_radix("nAn", 4).unwrap().is_nan());
assert!(f32::from_str_radix("-nAn", 4).unwrap().is_nan());
}
#[test]
fn wrapping_is_num() {
fn require_num<T: Num>(_: &T) {}
require_num(&Wrapping(42_u32));
require_num(&Wrapping(-42));
}
#[test]
fn wrapping_from_str_radix() {
macro_rules! test_wrapping_from_str_radix {
($($t:ty)+) => {
$(
for &(s, r) in &[("42", 10), ("42", 2), ("-13.0", 10), ("foo", 10)] {
let w = Wrapping::<$t>::from_str_radix(s, r).map(|w| w.0);
assert_eq!(w, <$t as Num>::from_str_radix(s, r));
}
)+
};
}
test_wrapping_from_str_radix!(usize u8 u16 u32 u64 isize i8 i16 i32 i64);
}
#[test]
fn check_num_ops() {
fn compute<T: Num + Copy>(x: T, y: T) -> T {
x * y / y % y + y - y
}
assert_eq!(compute(1, 2), 1)
}
#[test]
fn check_numref_ops() {
fn compute<T: NumRef>(x: T, y: &T) -> T {
x * y / y % y + y - y
}
assert_eq!(compute(1, &2), 1)
}
#[test]
fn check_refnum_ops() {
fn compute<T: Copy>(x: &T, y: T) -> T
where
for<'a> &'a T: RefNum<T>,
{
&(&(&(&(x * y) / y) % y) + y) - y
}
assert_eq!(compute(&1, 2), 1)
}
#[test]
fn check_refref_ops() {
fn compute<T>(x: &T, y: &T) -> T
where
for<'a> &'a T: RefNum<T>,
{
&(&(&(&(x * y) / y) % y) + y) - y
}
assert_eq!(compute(&1, &2), 1)
}
#[test]
fn check_numassign_ops() {
fn compute<T: NumAssign + Copy>(mut x: T, y: T) -> T {
x *= y;
x /= y;
x %= y;
x += y;
x -= y;
x
}
assert_eq!(compute(1, 2), 1)
}
#[test]
fn check_numassignref_ops() {
fn compute<T: NumAssignRef + Copy>(mut x: T, y: &T) -> T {
x *= y;
x /= y;
x %= y;
x += y;
x -= y;
x
}
assert_eq!(compute(1, &2), 1)
}