加电:DETR论文阅读

DETR:End ot End object detection with transformer.

主要工作

这篇文章的主要工作在于,是将transformer引入到目标检测这一类计算机视觉的任务中,transformer的优势在于:模型的通用性和高上限(gpt是最好的例子,算力和效果正相关);全局注意力机制;可以较好的建模元素和元素之间的关系。端到端这样简洁的流程架构,也是主流趋势。相较于以往的一阶段、二阶段的目标检测,DETR会抛弃之前的先验框,先验中心点角点这些人工设计的步骤,这个算是transfomer的附加优势,其注意力机制可以解决之前先验框问题。旧的模型中,之所以有先验框很大一部分原因是框的解空间太大了,没必要也难以穷举,于是选择人工设计一些策略来输入一些先验信息。

方法

为了实现将transformer的结构引入到视觉任务中,做了:

  • 引入二分图匹配来实现pred和gt的1对1匹配,顺带的优势便是可以实现并行解码

pipeline

  • 利用CNN提取图像序列特征融入位置编码作为transfoermer encoder输入
  • 将encoder输出送入到decoder中得到预测结果
    模型流程比较简单, 工作会集中在对怕热diction heads 的处理
相关推荐
c0d1ng4 小时前
二月第二周周报(论文阅读)
论文阅读
DuHz4 小时前
通过超宽带信号估计位置——论文精读
论文阅读·人工智能·机器学习·自动驾驶·汽车
Biomamba生信基地4 小时前
《Science Advances》11例样本图谱文章,空间转录组揭示特发性肺纤维化病理特征
论文阅读·空间转录组分析
觉醒大王2 天前
哪些文章会被我拒稿?
论文阅读·笔记·深度学习·考研·自然语言处理·html·学习方法
觉醒大王2 天前
强女思维:着急,是贪欲外显的相。
java·论文阅读·笔记·深度学习·学习·自然语言处理·学习方法
张较瘦_2 天前
[论文阅读] AI | 用机器学习给深度学习库“体检”:大幅提升测试效率的新思路
论文阅读·人工智能·机器学习
m0_650108243 天前
IntNet:面向协同自动驾驶的通信驱动多智能体强化学习框架
论文阅读·marl·多智能体系统·网联自动驾驶·意图共享·自适应通讯·端到端协同
m0_650108243 天前
Raw2Drive:基于对齐世界模型的端到端自动驾驶强化学习方案
论文阅读·机器人·强化学习·端到端自动驾驶·双流架构·引导机制·mbrl自动驾驶
快降重科研小助手3 天前
前瞻与规范:AIGC降重API的技术演进与负责任使用
论文阅读·aigc·ai写作·降重·降ai·快降重
源于花海4 天前
IEEE TIE期刊论文学习——基于元学习与小样本重训练的锂离子电池健康状态估计方法
论文阅读·元学习·电池健康管理·并行网络·小样本重训练