加电:DETR论文阅读

DETR:End ot End object detection with transformer.

主要工作

这篇文章的主要工作在于,是将transformer引入到目标检测这一类计算机视觉的任务中,transformer的优势在于:模型的通用性和高上限(gpt是最好的例子,算力和效果正相关);全局注意力机制;可以较好的建模元素和元素之间的关系。端到端这样简洁的流程架构,也是主流趋势。相较于以往的一阶段、二阶段的目标检测,DETR会抛弃之前的先验框,先验中心点角点这些人工设计的步骤,这个算是transfomer的附加优势,其注意力机制可以解决之前先验框问题。旧的模型中,之所以有先验框很大一部分原因是框的解空间太大了,没必要也难以穷举,于是选择人工设计一些策略来输入一些先验信息。

方法

为了实现将transformer的结构引入到视觉任务中,做了:

  • 引入二分图匹配来实现pred和gt的1对1匹配,顺带的优势便是可以实现并行解码

pipeline

  • 利用CNN提取图像序列特征融入位置编码作为transfoermer encoder输入
  • 将encoder输出送入到decoder中得到预测结果
    模型流程比较简单, 工作会集中在对怕热diction heads 的处理
相关推荐
落痕的寒假7 小时前
[论文总结] 深度学习在农业领域应用论文笔记14
论文阅读·人工智能·深度学习
梦云澜11 小时前
论文阅读(十):用可分解图模型模拟连锁不平衡
论文阅读·人工智能·深度学习
AIGC大时代21 小时前
对比DeepSeek、ChatGPT和Kimi的学术写作撰写引言能力
数据库·论文阅读·人工智能·chatgpt·数据分析·prompt
梦云澜1 天前
论文阅读(十二):全基因组关联研究中生物通路的图形建模
论文阅读·人工智能·深度学习
摸鱼仙人~1 天前
Attention Free Transformer (AFT)-2020论文笔记
论文阅读·深度学习·transformer
AIGC大时代1 天前
对比DeepSeek、ChatGPT和Kimi的学术写作关键词提取能力
论文阅读·人工智能·chatgpt·数据分析·prompt
梦云澜2 天前
论文阅读(九):通过概率图模型建立连锁不平衡模型和进行关联研究:最新进展访问之旅
论文阅读·人工智能·深度学习
AIGC大时代3 天前
学术方向选则与规划DeepSeek、ChatGPT和Kimi对比
论文阅读·人工智能·chatgpt·数据分析·prompt
程序喵;3 天前
Retrieval-Augmented Generation for Large Language Models: A Survey——(1)Overview
论文阅读·人工智能·语言模型·自然语言处理·rag