OpenCV计算机视觉 03 椒盐噪声的添加与常见的平滑处理方式(均值、方框、高斯、中值)

上一篇文章:OpenCV计算机视觉 02 图片修改 图像运算 边缘填充 阈值处理

添加椒盐噪声

python 复制代码
def add_peppersalt_noise(image, n=10000):
    result = image.copy()
    h, w = image.shape[:2]    # 获取图片的高和宽
    for i in range(n):    # 生成n个椒盐噪声
        x = np.random.randint(1, h)
        y=  np.random.randint(1, w)
        if np.random.randint(0, 2) == 0:
            result[x, y] = 0
        else:
            result[x,y] = 255
    return result
​
image = cv2.imread('tu.png')
cv2.imshow('original',image)
cv2.waitKey(0)
noise = add_peppersalt_noise(image)
cv2.imwrite(r'noise.png',noise)#保存一下,等会我们做平滑操作
cv2.imshow('noise',noise)
cv2.waitKey(0)

图像平滑常见处理方式

图像平滑(smoothing)也称为"模糊处理"(bluring), 是一项简单且使用频率很高的图像处理方法。图像平滑处理可以用来压制、弱化或消除图像中的细节、突变、边缘和噪声。但最常见的是用来减少图像上的噪声或者失真。降低图像分辨率时,平滑处理是很重要的。下面是常用的一些滤波器

  • 均值滤波(邻域平均滤波)--> blur函数

  • 方框滤波--> boxFilter函数

  • 高斯滤波-->GaussianBlur函数

  • 中值滤波-->medianBlur函数

均值滤波 (blur)

是指用当前像素点周围 n*n 个像素值的均值来代替当前像素值。边界点的处理可以扩展当前图像的周围像素点padding.

复制代码
blur函数        
python 复制代码
'''
dst=cv2.blur(src,ksize,anchor,borderType)
    dst是返回值
    src是需要处理的图像
    kszie是滤波核(卷积核)的大小
    anchor是锚点,默认值是(-1,-1)一般无需更改
    borderType是边界样式,一般无需更改
    一般情况下,使用dst=cv2.blur(src,ksize)即可
'''
python 复制代码
blur_1 = cv2.blur(noise,(3,3))  #卷积核为3,3   效果一般,清晰度一般
cv2.imshow('blur_1',blur_1)
cv2.waitKey(0)
​
blur_2 = cv2.blur(noise,(5,5))#卷积核为5,5    效果好但模糊
cv2.imshow('blur_2',blur_2)
cv2.waitKey(0)
cv2.destroyAllWindows()

尽量选奇数不选偶数

均值噪声对于椒盐噪声处理不咋地

方框滤波 (boxFilter)

方框滤波是指用当前像素点周围nxn个像素值的和来代替当前像素值。

python 复制代码
'''
dst=cv2.boxFilter(src,ddepth,ksize,anchor,normalize,borderType)式中:
   ● dst是返回值,表示进行方框滤波后得到的处理结果。
   ● src 是需要处理的图像,即原始图像。
   ● ddepth是处理结果图像的图像深度,一般使用-1表示与原始图像使用相同的图像深度。
   ● ksize 是滤波核的大小。滤波核大小是指在滤波处理过程中所选择的邻域图像的高 度和宽度。
   ● anchor 是锚点,(指对应哪个区域)
   ● normalize 表示在滤波时是否进行归一化。
      1.当值为True时,归一化,用邻域像素值的和除以面积。  此时方框滤波与 均值滤波 效果相同。
      2.当值为False时,不归一化,直接使用邻域像素值的和。和>255时使用255
'''
python 复制代码
boxFilter_1 = cv2.boxFilter(noise,-1,(3,3),normalize = True)
cv2.imshow('boxFilter_1',boxFilter_1)
cv2.waitKey(0)
boxFilter_2 = cv2.boxFilter(noise,-1,(3,3),normalize = False)
cv2.imshow('boxFilter_2',boxFilter_2)
cv2.waitKey(0)
高斯滤波(GaussianBlur)

对整幅图像进行加权平均的过程,每一个像素点的值,都由其本身和邻域内的其他像素值经过加权平均后得到。

python 复制代码
'''
cv2.GaussianBlur(src, ksize[, sigmaX[, sigmaY[, dst]]])高斯滤波
参数说明:
src:输入图像,通常是一个NumPy数组。
ksize:滤波器的大小,它是一个元组,表示在水平和垂直方向上的像素数量。例如,(5, 5)表示一个5x5的滤波器。
sigmaX和sigmaY:分别表示在X轴和Y轴方向上的标准差。这些值与滤波器大小相同。默认情况下,它们都等于0,这意味着没有高斯模糊。
dst:输出图像,通常是一个NumPy数组。如果为None,则会创建一个新的数组来存储结果。
'''
python 复制代码
GaussianB = cv2.GaussianBlur(noise,(3,3),1) #标准差为1,标准正太分布。
cv2.imshow('GaussianBlur_k=3_s=1',GaussianB)
cv2.waitKey(0)
GaussianB = cv2.GaussianBlur(noise,(3,3),2) #标准差为1,标准正太分布。
cv2.imshow('GaussianBlur_k=3_s=2',GaussianB)
cv2.waitKey(0)
GaussianB = cv2.GaussianBlur(noise,(5,5),1) #标准差为1,标准正太分布。
cv2.imshow('GaussianBlur_k=5_s=1',GaussianB)
cv2.waitKey(0)
中值滤波(medianBlur)

会取当前像素点及其周围临近像素点(一共有奇数个像素点)的像素值,将这些像素值从小到大排序,然后将位于中间位置的像素值作为当前像素点的像素值。

medianBlur函数:

python 复制代码
'''
cv2.medianBlur(src, ksize[, dst])中值滤波
参数说明:
src:输入图像。
ksize:滤波器的大小,它是一个整数,表示在水平和垂直方向上的像素数量。例如,5表示一个5x5的滤波器。
dst:输出图像,通常是一个NumPy数组。如果为None,则会创建一个新的数组来存储结果。
'''
python 复制代码
medianB = cv2.medianBlur(noise,3)
cv2.imshow('medianBlur_k=3',medianB)
cv2.waitKey(0)
medianB = cv2.medianBlur(noise,5)
cv2.imshow('medianBlur_k=5',medianB)
cv2.waitKey(0)
cv2.destroyAllWindows()

综合来看,中值滤波处理椒盐噪声效果最好!

相关推荐
c#上位机11 分钟前
halcon图像非线性对比度增强——equ_histo_image
计算机视觉·c#·上位机·halcon·机器视觉
Bdygsl19 分钟前
数字图像处理总结 Day 6 —— 图像分割与彩色图像处理
图像处理·人工智能·计算机视觉
南极星10051 小时前
OPENCV(python)--初学之路(十五)Shi-Tomasi 角点检测和追踪的良好特征和SIFT简介
人工智能·opencv·计算机视觉
却道天凉_好个秋1 小时前
OpenCV(三十九):Harris角点检测
人工智能·opencv·计算机视觉
AndrewHZ1 小时前
【图像处理基石】RGB图像频域滤波:原理、实现与实战(Python)
图像处理·python·算法·计算机视觉·傅里叶变换·频域滤波·滤波核设计
c#上位机1 小时前
halcon提取单通道图像——access_channel
图像处理·人工智能·计算机视觉·c#·halcon
再__努力1点2 小时前
【59】3D尺度不变特征变换(SIFT3D):医学影像关键点检测的核心算法与实现
人工智能·python·算法·计算机视觉·3d
渡我白衣2 小时前
AI应用层革命(五)——智能体的自主演化:从工具到生命
人工智能·神经网络·机器学习·计算机视觉·目标跟踪·自然语言处理·知识图谱
却道天凉_好个秋2 小时前
OpenCV(四十):Shi-Tomasi角点检测
人工智能·opencv·计算机视觉