pytorch将数据与模型都放到GPU上训练

默认是CPU,如果想要用GPU需要:

  1. 安装配置cuda,然后更新/下载支持gpu版本的pytorch,可以参考:https://blog.csdn.net/weixin_35757704/article/details/124315569

  2. 设置device:

    py 复制代码
    device = torch.device('cuda' if torch.cuda.is_available else 'cpu')

    然后将数据与模型后面都额外加上.to(device)即可

示例程序

py 复制代码
import torch
import torch.nn as nn


# 一个简单的模型
class LinearRegressionModel(nn.Module):
    def __init__(self, input_shape, output_shape):
        super(LinearRegressionModel, self).__init__()
        self.linear = nn.Linear(input_shape, output_shape)

    def forward(self, x):
        out = self.linear(x)
        return out


def main():
    x_train = torch.randn(100, 4)  # 生成训练特征
    y_train = torch.randn(100, 1)  # 生成label
    model = LinearRegressionModel(x_train.shape[1], 1)
    optimizer = torch.optim.SGD(model.parameters(), lr=0.01)  # 优化函数
    criterion = nn.MSELoss()  # 损失函数
    for epoch in range(100):
        optimizer.zero_grad()
        outputs = model(x_train)
        loss = criterion(outputs, y_train)
        loss.backward()
        optimizer.step()


if __name__ == '__main__':
    main()

修改为GPU版本:

py 复制代码
import torch
import torch.nn as nn


# 一个简单的模型
class LinearRegressionModel(nn.Module):
    def __init__(self, input_shape, output_shape):
        super(LinearRegressionModel, self).__init__()
        self.linear = nn.Linear(input_shape, output_shape)

    def forward(self, x):
        out = self.linear(x)
        return out


def main():
    # 1. 设置device
    device = torch.device('cuda' if torch.cuda.is_available else 'cpu')
    # 2. 数据与模型后都加 .to(device) 即可
    x_train = torch.randn(100, 4).to(device)  # 生成训练特征
    y_train = torch.randn(100, 1).to(device)  # 生成label
    model = LinearRegressionModel(x_train.shape[1], 1).to(device)  # next(transformer.parameters()).device

    optimizer = torch.optim.SGD(model.parameters(), lr=0.01)  # 优化函数
    criterion = nn.MSELoss()  # 损失函数
    for epoch in range(100):
        optimizer.zero_grad()
        outputs = model(x_train)
        loss = criterion(outputs, y_train)
        loss.backward()
        optimizer.step()


if __name__ == '__main__':
    main()

修改后:

  1. 查看变量的位置:可以使用x_train.device查看tensor变量的位置
  2. 查看模型的位置:可以使用next(model.parameters()).device查看模型的位置

注意:不在同一个位置上的变量之间无法计算,模型无法使用不在同一个位置的数据

相关推荐
DeniuHe18 分钟前
Pytorch中的直方图
pytorch
哈__19 分钟前
CANN多模型并发部署方案
人工智能·pytorch
DeniuHe1 小时前
Pytorch中的众数
人工智能·pytorch·python
DeniuHe12 小时前
torch.distribution函数详解
pytorch
退休钓鱼选手15 小时前
[ Pytorch教程 ] 神经网络的基本骨架 torch.nn -Neural Network
pytorch·深度学习·神经网络
DeniuHe15 小时前
用 PyTorch 库创建了一个随机张量,并演示了多种张量取整和分解操作
pytorch
Network_Engineer20 小时前
从零手写LSTM:从门控原理到PyTorch源码级实现
人工智能·pytorch·lstm
多恩Stone1 天前
【3D-AICG 系列-1】Trellis v1 和 Trellis v2 的区别和改进
人工智能·pytorch·python·算法·3d·aigc
2501_901147831 天前
PyTorch DDP官方文档学习笔记(核心干货版)
pytorch·笔记·学习·算法·面试
铁手飞鹰1 天前
[深度学习]常用的库与操作
人工智能·pytorch·python·深度学习·numpy·scikit-learn·matplotlib