pytorch将数据与模型都放到GPU上训练

默认是CPU,如果想要用GPU需要:

  1. 安装配置cuda,然后更新/下载支持gpu版本的pytorch,可以参考:https://blog.csdn.net/weixin_35757704/article/details/124315569

  2. 设置device:

    py 复制代码
    device = torch.device('cuda' if torch.cuda.is_available else 'cpu')

    然后将数据与模型后面都额外加上.to(device)即可

示例程序

py 复制代码
import torch
import torch.nn as nn


# 一个简单的模型
class LinearRegressionModel(nn.Module):
    def __init__(self, input_shape, output_shape):
        super(LinearRegressionModel, self).__init__()
        self.linear = nn.Linear(input_shape, output_shape)

    def forward(self, x):
        out = self.linear(x)
        return out


def main():
    x_train = torch.randn(100, 4)  # 生成训练特征
    y_train = torch.randn(100, 1)  # 生成label
    model = LinearRegressionModel(x_train.shape[1], 1)
    optimizer = torch.optim.SGD(model.parameters(), lr=0.01)  # 优化函数
    criterion = nn.MSELoss()  # 损失函数
    for epoch in range(100):
        optimizer.zero_grad()
        outputs = model(x_train)
        loss = criterion(outputs, y_train)
        loss.backward()
        optimizer.step()


if __name__ == '__main__':
    main()

修改为GPU版本:

py 复制代码
import torch
import torch.nn as nn


# 一个简单的模型
class LinearRegressionModel(nn.Module):
    def __init__(self, input_shape, output_shape):
        super(LinearRegressionModel, self).__init__()
        self.linear = nn.Linear(input_shape, output_shape)

    def forward(self, x):
        out = self.linear(x)
        return out


def main():
    # 1. 设置device
    device = torch.device('cuda' if torch.cuda.is_available else 'cpu')
    # 2. 数据与模型后都加 .to(device) 即可
    x_train = torch.randn(100, 4).to(device)  # 生成训练特征
    y_train = torch.randn(100, 1).to(device)  # 生成label
    model = LinearRegressionModel(x_train.shape[1], 1).to(device)  # next(transformer.parameters()).device

    optimizer = torch.optim.SGD(model.parameters(), lr=0.01)  # 优化函数
    criterion = nn.MSELoss()  # 损失函数
    for epoch in range(100):
        optimizer.zero_grad()
        outputs = model(x_train)
        loss = criterion(outputs, y_train)
        loss.backward()
        optimizer.step()


if __name__ == '__main__':
    main()

修改后:

  1. 查看变量的位置:可以使用x_train.device查看tensor变量的位置
  2. 查看模型的位置:可以使用next(model.parameters()).device查看模型的位置

注意:不在同一个位置上的变量之间无法计算,模型无法使用不在同一个位置的数据

相关推荐
小码hh6 小时前
【PonitNet++】1. 从数据到方法:点云技术核心知识全景梳理
人工智能·pytorch·python
岑梓铭7 小时前
(YOLO前置知识点)神经网络、Pytorch、卷积神经网络CNN
人工智能·pytorch·笔记·深度学习·神经网络·yolo·计算机视觉
zlya8 小时前
RTX pro 6000 black well最新架构下安装 PyTorch CUDA - 解决 sm_120 兼容性问题
人工智能·pytorch·python
知乎的哥廷根数学学派18 小时前
基于数据驱动的自适应正交小波基优化算法(Python)
开发语言·网络·人工智能·pytorch·python·深度学习·算法
知乎的哥廷根数学学派1 天前
基于多物理约束融合与故障特征频率建模的滚动轴承智能退化趋势分析(Pytorch)
人工智能·pytorch·python·深度学习·算法·机器学习
抠头专注python环境配置1 天前
2026终极诊断指南:解决Windows PyTorch GPU安装失败,从迷茫到确定
人工智能·pytorch·windows·深度学习·gpu·环境配置·cuda
阿正的梦工坊1 天前
pip install transformer_engine[pytorch]编译错误解决方法
pytorch·transformer·pip
、我是男生。1 天前
tensorflow、pytorch
人工智能·pytorch·tensorflow
Yongqiang Cheng1 天前
Deep Learning with PyTorch: Tensors (张量)
pytorch·tensor·张量
知乎的哥廷根数学学派1 天前
基于物理约束指数退化与Hertz接触理论的滚动轴承智能退化趋势分析(Pytorch)
开发语言·人工智能·pytorch·python·深度学习·算法·机器学习