什么是机器学习

机器学习,英文Machine learning,是人工智能(AI,artificial intelligence)的一个分支。旨在使机器或计算机像人一样学习,通过让其接触更多的数据,以期其能够自动执行任务,提高其性能和准确性。

机器学习算法的学习系统一般分为三个部分:

  1. 决策过程:一般,机器学习算法都是用来做预测或分类。基于一些输入数据,这些数据可能被标记或没被标记,做出关于数据模式的推测
  2. 误差函数:误差函数是用来评估预测模型的。比如说,如果有一些已知的例子,那么误差函数就可以与这些已知例子做比较,以此来评估预测模型的准确性。
  3. 模型优化过程:如果模型可以更好拟合训练集中的数据点,那么就可以调整权重,减少已知例子与模型预测之间的差距。机器算法会重复这个过程------评估和优化,自动更新权重,直到达到某个准确性的阈值。

误差函数是必须的,如果模型没有被评估过,那么我们就不知道这个模型到底可不可靠或者说可靠到什么程度。典型的做法就是拿已知的和预测值做比较。

模型优化过程也是必须的,在这个模型能够拿来用之前,必须完成这个过程,这个过程利用训练数据集中的数据点,通过不断读取数据点,评估预测值与实际值的差距,不断调整权重,将函数的输入和输出值,尽可能符合训练集中的映射关系,这就是所谓的拟合。要一个模型百分百预测正确,其实是很困难的,随着训练数据集越大,拟合过程就越久,因为要不断的评估与优化,每一次权重的调整都可能会影响前面的数据点。这个过程在预测的准确率达到某个预期值就可以结束了。否则就很难结束了。

决策过程就是在模型"成品"时拿来用时的事情了。

相关推荐
junziruruo2 分钟前
三叉预测头Trident prediction head(RGBT目标跟踪以MTNET为例)
人工智能·计算机视觉·目标跟踪
光羽隹衡7 分钟前
计算机视觉--Opencv(图像形态学)
人工智能·opencv·计算机视觉
懈尘9 分钟前
基于Spring Boot与LangChain4j的AI驱动新闻系统设计与工程实现
java·大数据·人工智能·spring boot·后端·langchain
倔强的石头1069 分钟前
假设空间与版本空间 —— 机器学习是 “猜规律” 的过程
人工智能·机器学习
永远都不秃头的程序员(互关)10 分钟前
【决策树深度探索(五)】智慧之眼:信息增益,如何找到最佳决策问题?
算法·决策树·机器学习
flying_131410 分钟前
图神经网络分享系列-GGNN(GATED GRAPH SEQUENCE NEURAL NETWORKS)(三)
人工智能·深度学习·神经网络·图神经网络·ggnn·门控机制·图特征学习
cooldream200911 分钟前
Agent Skill:新一代 AI 设计模式的原理、实践与 MCP 协同应用解析
人工智能·mcp·agent skill
劈星斩月11 分钟前
机器学习(Machine Learning)系列
深度学习·神经网络·机器学习
言無咎14 分钟前
传统财务RPA陷入性能瓶颈?AI财务机器人用LLM重构智能财税
人工智能·机器人·rpa
一休哥助手15 分钟前
2026年1月25日人工智能早间新闻
人工智能