什么是机器学习

机器学习,英文Machine learning,是人工智能(AI,artificial intelligence)的一个分支。旨在使机器或计算机像人一样学习,通过让其接触更多的数据,以期其能够自动执行任务,提高其性能和准确性。

机器学习算法的学习系统一般分为三个部分:

  1. 决策过程:一般,机器学习算法都是用来做预测或分类。基于一些输入数据,这些数据可能被标记或没被标记,做出关于数据模式的推测
  2. 误差函数:误差函数是用来评估预测模型的。比如说,如果有一些已知的例子,那么误差函数就可以与这些已知例子做比较,以此来评估预测模型的准确性。
  3. 模型优化过程:如果模型可以更好拟合训练集中的数据点,那么就可以调整权重,减少已知例子与模型预测之间的差距。机器算法会重复这个过程------评估和优化,自动更新权重,直到达到某个准确性的阈值。

误差函数是必须的,如果模型没有被评估过,那么我们就不知道这个模型到底可不可靠或者说可靠到什么程度。典型的做法就是拿已知的和预测值做比较。

模型优化过程也是必须的,在这个模型能够拿来用之前,必须完成这个过程,这个过程利用训练数据集中的数据点,通过不断读取数据点,评估预测值与实际值的差距,不断调整权重,将函数的输入和输出值,尽可能符合训练集中的映射关系,这就是所谓的拟合。要一个模型百分百预测正确,其实是很困难的,随着训练数据集越大,拟合过程就越久,因为要不断的评估与优化,每一次权重的调整都可能会影响前面的数据点。这个过程在预测的准确率达到某个预期值就可以结束了。否则就很难结束了。

决策过程就是在模型"成品"时拿来用时的事情了。

相关推荐
icestone2000几秒前
使用Cursor开发大型项目的技巧
前端·人工智能·ai编程
csdn_life18几秒前
训练式推理:算力通缩时代下下一代AI部署范式的创新与落地
人工智能·深度学习·机器学习
Coding茶水间5 分钟前
基于深度学习的猪识别系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·python·深度学习·yolo·目标检测
志栋智能17 分钟前
AI驱动的安全自动化机器人:从“告警疲劳”到“智能免疫”的防御革命
运维·人工智能·安全·机器人·自动化
X54先生(人文科技)25 分钟前
启蒙灯塔起源团预言—碳硅智能时代到来
人工智能·python·机器学习·语言模型
志栋智能1 小时前
自动化运维真的只能选复杂平台吗?
运维·网络·数据库·人工智能·自动化
AC赳赳老秦1 小时前
低代码AI化革命:DeepSeek引领智能开发新纪元
网络·人工智能·安全·web安全·低代码·prometheus·deepseek
波动几何1 小时前
市场几何动力学:价格运动三大定律与牛顿范式革命
人工智能
LaughingZhu1 小时前
Product Hunt 每日热榜 | 2026-02-17
大数据·数据库·人工智能·经验分享·搜索引擎
数据智能老司机1 小时前
Agentic Mesh——Agent 架构
人工智能·llm·agent