什么是机器学习

机器学习,英文Machine learning,是人工智能(AI,artificial intelligence)的一个分支。旨在使机器或计算机像人一样学习,通过让其接触更多的数据,以期其能够自动执行任务,提高其性能和准确性。

机器学习算法的学习系统一般分为三个部分:

  1. 决策过程:一般,机器学习算法都是用来做预测或分类。基于一些输入数据,这些数据可能被标记或没被标记,做出关于数据模式的推测
  2. 误差函数:误差函数是用来评估预测模型的。比如说,如果有一些已知的例子,那么误差函数就可以与这些已知例子做比较,以此来评估预测模型的准确性。
  3. 模型优化过程:如果模型可以更好拟合训练集中的数据点,那么就可以调整权重,减少已知例子与模型预测之间的差距。机器算法会重复这个过程------评估和优化,自动更新权重,直到达到某个准确性的阈值。

误差函数是必须的,如果模型没有被评估过,那么我们就不知道这个模型到底可不可靠或者说可靠到什么程度。典型的做法就是拿已知的和预测值做比较。

模型优化过程也是必须的,在这个模型能够拿来用之前,必须完成这个过程,这个过程利用训练数据集中的数据点,通过不断读取数据点,评估预测值与实际值的差距,不断调整权重,将函数的输入和输出值,尽可能符合训练集中的映射关系,这就是所谓的拟合。要一个模型百分百预测正确,其实是很困难的,随着训练数据集越大,拟合过程就越久,因为要不断的评估与优化,每一次权重的调整都可能会影响前面的数据点。这个过程在预测的准确率达到某个预期值就可以结束了。否则就很难结束了。

决策过程就是在模型"成品"时拿来用时的事情了。

相关推荐
m0_5276539020 小时前
NVIDIA Orin NX使用Jetpack安装CUDA、cuDNN、TensorRT、VPI时的error及解决方法
linux·人工智能·jetpack·nvidia orin nx
wbzuo20 小时前
Clip:Learning Transferable Visual Models From Natural Language Supervision
论文阅读·人工智能·transformer
带土121 小时前
2. YOLOv5 搭建一个完整的目标检测系统核心步骤
人工智能·yolo·目标检测
生信大表哥21 小时前
贝叶斯共识聚类(BCC)
机器学习·数据挖掘·聚类
1***Q78421 小时前
PyTorch图像分割实战,U-Net模型训练与部署
人工智能·pytorch·python
阿十六21 小时前
OUC AI Lab 第六章:基于卷积的注意力机制
人工智能
努力の小熊21 小时前
基于tensorflow框架的MSCNN-LSTM模型在CWRU轴承故障诊断的应用
人工智能·tensorflow·lstm
AI即插即用21 小时前
即插即用涨点系列 (八):AMDNet 详解!AAAI 2025 SOTA,MLP 融合多尺度分解(MDM)与 AMS 的涨点新范式。
人工智能·pytorch·深度学习·目标检测·计算机视觉·transformer
脑极体21 小时前
穿越沙海:中国AI的中东远征
人工智能·搜索引擎
jn1001053721 小时前
【概念科普】原位CT(In-situ CT)技术详解:从定义到应用的系统梳理
人工智能