什么是机器学习

机器学习,英文Machine learning,是人工智能(AI,artificial intelligence)的一个分支。旨在使机器或计算机像人一样学习,通过让其接触更多的数据,以期其能够自动执行任务,提高其性能和准确性。

机器学习算法的学习系统一般分为三个部分:

  1. 决策过程:一般,机器学习算法都是用来做预测或分类。基于一些输入数据,这些数据可能被标记或没被标记,做出关于数据模式的推测
  2. 误差函数:误差函数是用来评估预测模型的。比如说,如果有一些已知的例子,那么误差函数就可以与这些已知例子做比较,以此来评估预测模型的准确性。
  3. 模型优化过程:如果模型可以更好拟合训练集中的数据点,那么就可以调整权重,减少已知例子与模型预测之间的差距。机器算法会重复这个过程------评估和优化,自动更新权重,直到达到某个准确性的阈值。

误差函数是必须的,如果模型没有被评估过,那么我们就不知道这个模型到底可不可靠或者说可靠到什么程度。典型的做法就是拿已知的和预测值做比较。

模型优化过程也是必须的,在这个模型能够拿来用之前,必须完成这个过程,这个过程利用训练数据集中的数据点,通过不断读取数据点,评估预测值与实际值的差距,不断调整权重,将函数的输入和输出值,尽可能符合训练集中的映射关系,这就是所谓的拟合。要一个模型百分百预测正确,其实是很困难的,随着训练数据集越大,拟合过程就越久,因为要不断的评估与优化,每一次权重的调整都可能会影响前面的数据点。这个过程在预测的准确率达到某个预期值就可以结束了。否则就很难结束了。

决策过程就是在模型"成品"时拿来用时的事情了。

相关推荐
自己的九又四分之三站台几秒前
基于OpenCV扶正扫描文件
人工智能·opencv·计算机视觉·c#
IT_陈寒1 分钟前
Python性能翻倍的5个隐藏技巧:让你的代码跑得比同事快50%
前端·人工智能·后端
byzh_rc4 分钟前
[模式识别-从入门到入土] 拓展-KKT条件
人工智能·机器学习·支持向量机
zd20057211 分钟前
STREAMS指南:环境及宿主相关微生物组研究中的技术报告标准
人工智能·python·算法
weixin_4093831213 分钟前
强化lora训练后的 用qwen训练的虚拟自己模型 这次挺好 数据总量300多条 加了十几条正常对话聊天记录
人工智能·深度学习·机器学习·训练模型
啊吧怪不啊吧13 分钟前
机器学习模型部署全流程实战:从训练完成到上线可用
大数据·人工智能·机器学习
其美杰布-富贵-李21 分钟前
PyTorch Optimizer 与 Scheduler 指南
人工智能·pytorch·python·优化·训练
Suahi23 分钟前
【HuggingFace LLM】经典NLP Tasks数据流转
人工智能·自然语言处理
西***634734 分钟前
破局信息孤岛 赋能城市智治——分布式可视化系统驱动智慧城市指挥中心升级
人工智能·分布式·智慧城市
zhaodiandiandian38 分钟前
AI智能体重构产业生态,从效率革命到体验升级
人工智能·microsoft