大模型系列17-RAGFlow搭建本地知识库

大模型系列17-RAGFlow搭建本地知识库

安装ollama

参考写的ollama的文档

安装open-wehui

参考写的安装open-webui的文章

安装并运行ragflow

下载ragflow
git clone https://github.com/infiniflow/ragflow.git

下载依赖镜像并运行

 docker compose -f docker-compose.yml up -d
 docker logs -f ragflow-server

运行成功后,使用 docker logs -f ragflow-server 查看运行状态

ragflow使用的各种环境变量在ragflow/docker/.env文件中,可以修改 端口号、ragflow的镜像版本等

RAG(检索、增强、生成)

RAG是什么

RAG(Retrieval Augmented Generation 检索增强生成)模型由Facebook AI Research(FAIR)团队于2020年首次提出,并迅速成为大模型应用中的热门方案。它结合了信息检索技术(例如传统向量数据库)和大语言模型(如LLMs)的技术,从外部知识库中检索相关信息,并将其作为prompt输入到大模型中获取输出。

RAG三过程

RAG 包含三个主要过程:检索、增强和生成

  • 检索:根据用户的查询内容,从外部知识库获取相关信息。具体而言,将用户的查询通过嵌入模型转换为向量,以便与向量数据库中存储的相关知识进行比对。通过相似性搜索,找出与查询最匹配的前 K 个数据。这个目的是为了给后续生成提供上下文信息知识。
  • 增强:将用户的查询内容和检索到的相关知识一起嵌入到一个预设的提示词模板中。对LLMs的提示词(prompt)
  • 生成:将经过检索增强的提示词内容输入到大型语言模型中,以生成所需的输出。

RAG问答系统构建步骤

向量库构建

收集数据:首先,需要收集与问答系统相关的各种数据,这些数据可以来自文档、网页、数据库等多种来源。

数据清洗:对收集到的数据进行清洗,去除噪声、重复项和无关信息,确保数据的质量和准确性。

知识库构建:将清洗后的数据构建成知识库。这通常包括将文本分割成较小的片段(chunks),使用文本嵌入模型(如GLM)将这些片段转换成向量,并将这些向量存储在向量数据库(如FAISS、Milvus等)中。

检索模块

问题向量化:当用户输入查询问题时,使用相同的文本嵌入模型将问题转换成向量。

相似度检索:在向量数据库中检索与问题向量最相似的知识库片段(chunks)。这通常通过计算向量之间的相似度(如余弦相似度)来实现。

结果排序:根据相似度得分对检索到的结果进行排序,选择最相关的片段作为后续生成的输入。

生成模块

上下文融合:将检索到的相关片段与原始问题合并,形成更丰富的上下文信息,将其作为大模型的prompt输入。

大语言模型生成:使用大语言模型(如GLM)基于上述上下文信息生成回答。大语言模型会学习如何根据检索到的信息来生成准确、有用的回答。

RAG解决LLM的痛点

RAG(检索增强生成)旨在缓解甚至解决以下大模型落地应用的痛点:

  • 有幻觉,可以提供更准确和可靠的领域特定知识,减少生成幻觉
  • 时效性,不需要重新训练模型,更新知识库即可保持同步更新
  • 使用外部知识库,保护隐私
  • 支持更长的上下文

参考:

使用ragflow

访问ragflow

网址:http://localhost/login,然后随便注册账户:

配置ollama模型

ollama list列出所有的模型,有两个Embedding模型以及一个qwen2:7b的模型

添加Embedding模型

添加chat模型

添加过后

系统模式设置

将刚才添加的模型设置到系统默认配置中

创建知识库

数据集配置

设置嵌入Embedding模型以及解析方法

这里我们做的机器学习论文库,因此可以将"解析方法"从"General"调整为"Paper"模式,对论文进行解析。

上传论文

论文解析

论文上传完毕后,执行论文内容的解析

论文解析过程,花了10几分钟

创建论文助理

新建一个论文助理,用于后续的聊天对话

聊天询问DeepSeek,可以看到确实识别了知识库

相关推荐
有Li3 分钟前
跨中心模型自适应牙齿分割|文献速递-医学影像人工智能进展
人工智能
牧歌悠悠5 小时前
【深度学习】Unet的基础介绍
人工智能·深度学习·u-net
坚毅不拔的柠檬柠檬5 小时前
AI革命下的多元生态:DeepSeek、ChatGPT、XAI、文心一言与通义千问的行业渗透与场景重构
人工智能·chatgpt·文心一言
坚毅不拔的柠檬柠檬5 小时前
2025:人工智能重构人类文明的新纪元
人工智能·重构
jixunwulian5 小时前
DeepSeek赋能AI边缘计算网关,开启智能新时代!
人工智能·边缘计算
Archie_IT5 小时前
DeepSeek R1/V3满血版——在线体验与API调用
人工智能·深度学习·ai·自然语言处理
大数据追光猿5 小时前
Python应用算法之贪心算法理解和实践
大数据·开发语言·人工智能·python·深度学习·算法·贪心算法
灵感素材坊6 小时前
解锁音乐创作新技能:AI音乐网站的正确使用方式
人工智能·经验分享·音视频
xinxiyinhe7 小时前
如何设置Cursor中.cursorrules文件
人工智能·python
AI服务老曹7 小时前
运用先进的智能算法和优化模型,进行科学合理调度的智慧园区开源了
运维·人工智能·安全·开源·音视频