大模型系列17-RAGFlow搭建本地知识库

大模型系列17-RAGFlow搭建本地知识库

安装ollama

参考写的ollama的文档

安装open-wehui

参考写的安装open-webui的文章

安装并运行ragflow

下载ragflow
git clone https://github.com/infiniflow/ragflow.git

下载依赖镜像并运行

复制代码
 docker compose -f docker-compose.yml up -d
 docker logs -f ragflow-server

运行成功后,使用 docker logs -f ragflow-server 查看运行状态

ragflow使用的各种环境变量在ragflow/docker/.env文件中,可以修改 端口号、ragflow的镜像版本等

RAG(检索、增强、生成)

RAG是什么

RAG(Retrieval Augmented Generation 检索增强生成)模型由Facebook AI Research(FAIR)团队于2020年首次提出,并迅速成为大模型应用中的热门方案。它结合了信息检索技术(例如传统向量数据库)和大语言模型(如LLMs)的技术,从外部知识库中检索相关信息,并将其作为prompt输入到大模型中获取输出。

RAG三过程

RAG 包含三个主要过程:检索、增强和生成

  • 检索:根据用户的查询内容,从外部知识库获取相关信息。具体而言,将用户的查询通过嵌入模型转换为向量,以便与向量数据库中存储的相关知识进行比对。通过相似性搜索,找出与查询最匹配的前 K 个数据。这个目的是为了给后续生成提供上下文信息知识。
  • 增强:将用户的查询内容和检索到的相关知识一起嵌入到一个预设的提示词模板中。对LLMs的提示词(prompt)
  • 生成:将经过检索增强的提示词内容输入到大型语言模型中,以生成所需的输出。

RAG问答系统构建步骤

向量库构建

收集数据:首先,需要收集与问答系统相关的各种数据,这些数据可以来自文档、网页、数据库等多种来源。

数据清洗:对收集到的数据进行清洗,去除噪声、重复项和无关信息,确保数据的质量和准确性。

知识库构建:将清洗后的数据构建成知识库。这通常包括将文本分割成较小的片段(chunks),使用文本嵌入模型(如GLM)将这些片段转换成向量,并将这些向量存储在向量数据库(如FAISS、Milvus等)中。

检索模块

问题向量化:当用户输入查询问题时,使用相同的文本嵌入模型将问题转换成向量。

相似度检索:在向量数据库中检索与问题向量最相似的知识库片段(chunks)。这通常通过计算向量之间的相似度(如余弦相似度)来实现。

结果排序:根据相似度得分对检索到的结果进行排序,选择最相关的片段作为后续生成的输入。

生成模块

上下文融合:将检索到的相关片段与原始问题合并,形成更丰富的上下文信息,将其作为大模型的prompt输入。

大语言模型生成:使用大语言模型(如GLM)基于上述上下文信息生成回答。大语言模型会学习如何根据检索到的信息来生成准确、有用的回答。

RAG解决LLM的痛点

RAG(检索增强生成)旨在缓解甚至解决以下大模型落地应用的痛点:

  • 有幻觉,可以提供更准确和可靠的领域特定知识,减少生成幻觉
  • 时效性,不需要重新训练模型,更新知识库即可保持同步更新
  • 使用外部知识库,保护隐私
  • 支持更长的上下文

参考:

使用ragflow

访问ragflow

网址:http://localhost/login,然后随便注册账户:

配置ollama模型

ollama list列出所有的模型,有两个Embedding模型以及一个qwen2:7b的模型

添加Embedding模型

添加chat模型

添加过后

系统模式设置

将刚才添加的模型设置到系统默认配置中

创建知识库

数据集配置

设置嵌入Embedding模型以及解析方法

这里我们做的机器学习论文库,因此可以将"解析方法"从"General"调整为"Paper"模式,对论文进行解析。

上传论文

论文解析

论文上传完毕后,执行论文内容的解析

论文解析过程,花了10几分钟

创建论文助理

新建一个论文助理,用于后续的聊天对话

聊天询问DeepSeek,可以看到确实识别了知识库

相关推荐
先做个垃圾出来………9 分钟前
迁移学习(Transfer Learning)
人工智能·机器学习·迁移学习
许泽宇的技术分享12 分钟前
ReAct Agent:让AI像人类一样思考与行动的革命性框架
人工智能·agent·react
eBest数字化转型方案1 小时前
2025年快消品行业渠道数字化营销系统全景透视与选型策略
人工智能
kkcodeer1 小时前
大模型Prompt原理、编写原则与技巧以及衡量方法
人工智能·prompt·ai大模型
DevSecOps选型指南1 小时前
SBOM风险预警 | NPM前端框架 javaxscript 遭受投毒窃取浏览器cookie
前端·人工智能·前端框架·npm·软件供应链安全厂商·软件供应链安全工具
rocksun2 小时前
MCP利用流式HTTP实现实时AI工具交互
人工智能·mcp
xiaok2 小时前
docker network create langbot-network这条命令在dify输入还是在langbot中输入
人工智能
It_张2 小时前
LLM(大语言模型)的工作原理 图文讲解
人工智能·语言模型·自然语言处理
Darach2 小时前
坐姿检测Python实现
人工智能·python