Pytest 接口关联

在接口自动化测试中,接口之间通常存在关联关系,比如前一个接口返回的数据需要传递给后续接口使用。以下是 Pytest 中实现接口关联的方法和详细讲解。


1. 什么是接口关联?

接口关联指的是一个接口的输出作为另一个接口的输入。常见的场景包括:

  • 登录接口返回的 token 需要传递给后续的接口。
  • 查询接口返回的 ID 用于更新或删除操作。
  • 多接口之间的数据依赖,比如依赖创建的资源进行操作。

2. 实现接口关联的常见方法

方法一:使用全局变量

直接使用全局变量存储接口返回值,供其他接口使用。

示例代码:

复制代码
import pytest
import requests

# 全局变量
global_data = {}

def test_login():
    url = "http://example.com/api/login"
    data = {"username": "user", "password": "pass"}
    response = requests.post(url, json=data)
    assert response.status_code == 200
    # 提取 token 并存储在全局变量中
    global_data["token"] = response.json().get("token")

def test_get_user_info():
    url = "http://example.com/api/user"
    headers = {"Authorization": f"Bearer {global_data['token']}"}
    response = requests.get(url, headers=headers)
    assert response.status_code == 200

优点:

  • 简单易用,适合小型测试场景。

缺点:

  • 全局变量可能导致测试数据污染,尤其在并发测试时。

方法二:使用 Fixture

通过 Pytest 的 Fixture 动态传递数据,避免全局变量的污染问题。

示例代码:

复制代码
import pytest
import requests

@pytest.fixture
def login():
    url = "http://example.com/api/login"
    data = {"username": "user", "password": "pass"}
    response = requests.post(url, json=data)
    assert response.status_code == 200
    # 返回 token
    return response.json().get("token")

def test_get_user_info(login):
    url = "http://example.com/api/user"
    headers = {"Authorization": f"Bearer {login}"}
    response = requests.get(url, headers=headers)
    assert response.status_code == 200

优点:

  • Fixture 的作用域可以控制数据的生命周期,适合中小型测试。
  • 代码结构清晰,易于维护。

缺点:

  • Fixture 的嵌套复杂性可能增加。

方法三:上下文管理(Context)

通过上下文类集中管理接口之间的关联数据,适合复杂项目。

示例代码:

复制代码
import pytest
import requests

class Context:
    def __init__(self):
        self.data = {}

    def set(self, key, value):
        self.data[key] = value

    def get(self, key):
        return self.data.get(key)

@pytest.fixture(scope="session")
def context():
    return Context()

def test_login(context):
    url = "http://example.com/api/login"
    data = {"username": "user", "password": "pass"}
    response = requests.post(url, json=data)
    assert response.status_code == 200
    # 存储 token
    context.set("token", response.json().get("token"))

def test_get_user_info(context):
    url = "http://example.com/api/user"
    headers = {"Authorization": f"Bearer {context.get('token')}"}
    response = requests.get(url, headers=headers)
    assert response.status_code == 200

优点:

  • 数据管理集中化,适合大型测试项目。
  • 支持复杂的关联数据。

缺点:

  • 代码稍微复杂,需要额外维护上下文类。

方法四:参数化动态传递数据

通过参数化结合接口调用动态传递数据。

示例代码:

复制代码
import pytest
import requests

def login():
    url = "http://example.com/api/login"
    data = {"username": "user", "password": "pass"}
    response = requests.post(url, json=data)
    assert response.status_code == 200
    return response.json().get("token")

@pytest.mark.parametrize("token", [login()])
def test_get_user_info(token):
    url = "http://example.com/api/user"
    headers = {"Authorization": f"Bearer {token}"}
    response = requests.get(url, headers=headers)
    assert response.status_code == 200

优点:

  • 简洁,适合测试用例数量少的场景。

缺点:

  • 需要提前调用依赖接口,无法动态更新参数。

方法五:测试用例之间共享数据

通过 request.node 实现测试用例之间的数据共享。

示例代码:

复制代码
import pytest
import requests

@pytest.fixture(scope="module")
def shared_data(request):
    request.node.shared_data = {}
    return request.node.shared_data

def test_login(shared_data):
    url = "http://example.com/api/login"
    data = {"username": "user", "password": "pass"}
    response = requests.post(url, json=data)
    assert response.status_code == 200
    # 存储 token
    shared_data["token"] = response.json().get("token")

def test_get_user_info(shared_data):
    url = "http://example.com/api/user"
    headers = {"Authorization": f"Bearer {shared_data['token']}"}
    response = requests.get(url, headers=headers)
    assert response.status_code == 200

优点:

  • 测试用例之间可以共享数据。
  • 避免全局变量污染。

缺点:

  • 不支持多线程并发测试。

3. 各方法适用场景对比

方法 适用场景 优点 缺点
全局变量 简单的测试场景 实现简单快速 容易污染全局数据,线程不安全
Fixture 中小型测试项目 数据隔离性好,生命周期可控 嵌套复杂时维护困难
上下文管理 大型复杂测试项目 数据管理集中化,适合复杂数据共享 增加额外代码复杂性
参数化传递数据 测试用例较少的简单场景 代码简洁,适合批量测试 无法动态更新
用例之间共享数据 依赖较强的测试用例 避免全局变量污染,模块化强 不适合并发测试
相关推荐
柯南二号7 分钟前
【后端】【Java】一文详解Spring Boot 统一日志与链路追踪实践
java·开发语言·数据库
2201_757830877 分钟前
DQL查询语句
数据库
一个无名的炼丹师9 分钟前
[硬核实战] 解锁多模态RAG:构建能“看懂”PDF复杂图表的智能问答系统
人工智能·python·pdf·多模态·rag
Chen--Xing15 分钟前
LeetCode 49.字母异位词分组
c++·python·算法·leetcode·rust
Dxy123931021615 分钟前
Python数据类型入门
python
孤独冷18 分钟前
ComfyUI 本地部署精华指南(Windows + CUDA)
windows·python
JIngJaneIL19 分钟前
基于Java+ vueOA工程项目管理系统(源码+数据库+文档)
java·开发语言·前端·数据库·vue.js·spring boot·后端
闲人编程21 分钟前
测试驱动开发与API测试:构建可靠的后端服务
驱动开发·python·flask·api·tdd·codecapsule
测试人社区-小明21 分钟前
从前端体验到后端架构:Airbnb全栈SDET面试深度解析
前端·网络·人工智能·面试·职场和发展·架构·自动化
李少兄22 分钟前
前端开发中的 transform、translate 与 transition
前端·css