【NLP基础】Word2Vec 中 CBOW 指什么?

【NLP基础】Word2Vec 中 CBOW 指什么?

重要性:★★

CBOW 模型是根据上下文预测目标词的神经网络("目标词"是指中间的单词,它周围的单词是"上下文")。通过训练这个 CBOW 模型,使其能尽可能地进行正确的预测,我们可以获得单词的分布式表示。

CBOW模型:从上下文的单词预测目标词。

CBOW模型的网络结构如下:

CBOW 模型的输入是上下文。这个上下文用 ['you', 'goodbye'] 这样的单词列表表示,输入经过中间层后到达输出层。从输入层到中间层的变换由相同的全连接层(权重为 W i n W_{in} Win)完成, 从中间层到输出层神经元的变换由另一个全连接层(权重为 W o u t W_{out} Wout)完成。

  1. 这里我们对上下文仅考虑两个单词,所以输入层有两个。 如果对上下文考虑 N 个单词,则输入层会有 N 个。
  2. 中间层的神经元是各个输 入层经全连接层变换后得到的值的"平均"。
  3. 输出层的神经元是各个单词的得分,它的值越大,说明对应单词的出现概率就越高。得分是指在被解释为概率之前的值, 对这些得分应用 Softmax 函数,就可以得到概率。

以上下文是 you 和 goodbye,正确解标签(神经网络应该预测出的单词)是 say为例。使用CBOW模型的计算流程如下(节点值的大小用灰度表示) :

如果网络具有"良好的权重", 那么在表示概率的神经元中,对应正确解的神经元的得分应该更高。CBOW 模型的学习就是调整权重,以使预测准确。如果模型能很好的完成预测推理任务,则权重 W i n W_{in} Win(确切地说是 W i n W_{in} Win 和 W o u t W_{out} Wout 两者)学习到了蕴含单词出现模式的有效向量。

输入侧和输出侧的权重都可以被视为单词的分布式表示:

输入侧和输出侧权重作为单词的分布式表示有三种选择:

  • A. 只使用输入侧的权重
  • B. 只使用输出侧的权重
  • C. 同时使用两个权重

CBOW模型只是学习语料库中单词的出现模式。如果语料库不一样,学习到的单词的分布式表示也不一样。

相关推荐
curemoon8 分钟前
理解都远正态分布中指数项的精度矩阵(协方差逆矩阵)
人工智能·算法·矩阵
胡桃不是夹子1 小时前
CPU安装pytorch(别点进来)
人工智能·pytorch·python
Fansv5871 小时前
深度学习-6.用于计算机视觉的深度学习
人工智能·深度学习·计算机视觉
xjxijd1 小时前
AI 为金融领域带来了什么突破?
人工智能·其他
SKYDROID云卓小助手2 小时前
无人设备遥控器之如何分享数传篇
网络·人工智能·算法·计算机视觉·电脑
deephub2 小时前
LLM高效推理:KV缓存与分页注意力机制深度解析
人工智能·深度学习·语言模型
奋斗的袍子0072 小时前
Spring AI + Ollama 实现调用DeepSeek-R1模型API
人工智能·spring boot·深度学习·spring·springai·deepseek
青衫弦语2 小时前
【论文精读】VLM-AD:通过视觉-语言模型监督实现端到端自动驾驶
人工智能·深度学习·语言模型·自然语言处理·自动驾驶
没枕头我咋睡觉2 小时前
【大语言模型_4】源码编译vllm框架cpu版
人工智能·语言模型·自然语言处理
视觉语言导航2 小时前
NeurIPS-2024 | 具身智能如何理解空间关系?SpatialRGPT:视觉语言模型中的具象空间推理
人工智能·具身智能