线性回归笔记1-4

matplotlib的scatter功能:

plt.scatter(x, y, s=sizes, c=colors, cmap='viridis', alpha=0.6, marker='o', linewidths=2, edgecolors='k', label='Random Data')

sizes = np.random.rand(2) * 300 # 生成两个0到300之间的随机数作为大小

sizes = np.array([50, 200]) # 第一个点大小为50,第二个点大小为200

sizes = np.array([100, 100]) # 两个点都有大小为100

最后plt.scatter(s=sizes)
numpy的shape:

1.x_train = np.array([[1.0], [2.0]])

二维数组,.shape返回(2,1)

x_train = np.array([1.0, 2.0])

一维数组,.shape返回(2,)

2.array_2d = np.array([[1, 2, 3], [4, 5, 6]])

print(array_2d.shape[0]) # 输出: 2,表示有2行

pandas DataFrame示例

df = pd.DataFrame({

'A': [1, 2, 3],

'B': [4, 5, 6]

})

print(df.shape[0]) # 输出: 3,表示有3行
w = copy.deepcopy(w_in):

深拷贝与浅拷贝(copy.copy(obj))的区别在于:

  • 浅拷贝只复制对象本身和它的直接引用,而不复制它所引用的其他对象。这意味着如果原始对象包含对其他对象的引用,那么浅拷贝和原始对象将共享这些引用的对象。
  • 深拷贝则递归地复制对象及其所有子对象,确保新对象和原始对象之间没有任何共享的子对象。

print(f"Iteration {i:4}: Cost {J_history[-1]:0.2e} ",

f"dj_dw: {dj_dw: 0.3e}, dj_db: {dj_db: 0.3e} ",

f"w: {w: 0.3e}, b:{b: 0.5e}"):

{i:4}意味着整数i将占据至少4个字符的宽度,而{J_history[-1]:0.2e}则意味着科学计数法表示的成本值将保留两位小数。

相关推荐
芒果量化8 分钟前
量化交易 - 网格交易策略实现与原理解析
python·算法·机器学习·金融
LetsonH20 分钟前
Python工具链UV整合环境管理
开发语言·python·uv
欣然~29 分钟前
基于深度学习进行运输系统优化
python·深度学习
zm1 小时前
UDP 多点通信
开发语言·php
王有品1 小时前
Java 集合框架对比全解析:单列集合 vs 双列集合
java·windows·python
北漂老男孩1 小时前
ChromeDriver 技术生态与应用场景深度解析
java·爬虫·python·自动化
.小墨迹1 小时前
Apollo学习——planning模块(3)之planning_base
linux·开发语言·c++·学习·自动驾驶
小喵喵生气气1 小时前
Python60日基础学习打卡D26
开发语言·python
*neverGiveUp*2 小时前
PHP基础知识
开发语言·php
wxin_VXbishe2 小时前
springboot旅游小程序-计算机毕业设计源码76696
java·spring boot·python·spring·django·sqlite·flask