[2025分类&时序异常检测指标R-AUC与VUS]

梳理了一下分类中常见的指标,这些指标与时序异常检测 中新提出的A-RUC与VUS之间的关系

  • 真正例(True Positive,TP): 被正确识别为正样本的数量。
  • 真负例(True Negative,TN): 被正确识别为负样本的数量。
  • 假正例(False Positive ,FP): 被错误识为正样本数量
  • 假负例(False Negative,FN): 被错误识别为负样本数量
  • 精确度 (Precision,Pr): 关注所有识别为正样本中的真实正样本占比,此外还有Precison@K,即取前K为都为正确结果的度量方式
    P r ( p r e c i s i o n ) = T P T P + F P Pr(precision)=\frac{TP}{TP+FP} Pr(precision)=TP+FPTP
  • 召回率 (Recall,Re): 又称TPR关注所有正确识别结果中的正样本占比
    R e ( R e c a l l ) = T P T P + F N Re(Recall)=\frac{TP}{TP+FN} Re(Recall)=TP+FNTP
  • F1(F1-score) : F1分数,一个综合了Recall和Precision的评价β,通常取1
    ( 1 + β 2 ) ∗ P r ∗ R e β 2 ∗ P r + R e \frac{(1+β^2)*Pr*Re}{β^2*Pr+Re} β2∗Pr+Re(1+β2)∗Pr∗Re

参考资料:https://github.com/TheDatumOrg/VUS

相关推荐
Faker66363aaa1 天前
基于Faster R-CNN的桃黄病病害检测与分类系统实现_1
分类·r语言·cnn
V搜xhliang02461 天前
AI大模型辅助临床医学科研应用、论文写作、数据分析与AI绘图学习班
人工智能·数据挖掘·数据分析
fresh hacker1 天前
【Python数据分析】速通NumPy
开发语言·python·数据挖掘·数据分析·numpy
相思半1 天前
机器学习模型实战全解析
大数据·人工智能·笔记·python·机器学习·数据挖掘·transformer
黄小耶@1 天前
基于 CNN 的猫狗分类实战
人工智能·分类·cnn
艾上编程1 天前
《Python实战小课:数据分析场景——解锁数据洞察之力》导读
python·数据挖掘·数据分析
民乐团扒谱机1 天前
【微实验】谱聚类之大规模数据应用——Nyström 方法
人工智能·算法·机器学习·matlab·数据挖掘·聚类·谱聚类
测试人社区-千羽1 天前
AI测试中的伦理考虑因素
运维·人工智能·opencv·测试工具·数据挖掘·自动化·开源软件
kangk121 天前
单细胞转录组分析流程十一(细胞通讯,cellchat,单样本)
数据挖掘·单细胞
Skrrapper1 天前
【大模型开发之数据挖掘】2.数据挖掘的核心任务与常用方法
数据库·人工智能·数据挖掘