[2025分类&时序异常检测指标R-AUC与VUS]

梳理了一下分类中常见的指标,这些指标与时序异常检测 中新提出的A-RUC与VUS之间的关系

  • 真正例(True Positive,TP): 被正确识别为正样本的数量。
  • 真负例(True Negative,TN): 被正确识别为负样本的数量。
  • 假正例(False Positive ,FP): 被错误识为正样本数量
  • 假负例(False Negative,FN): 被错误识别为负样本数量
  • 精确度 (Precision,Pr): 关注所有识别为正样本中的真实正样本占比,此外还有Precison@K,即取前K为都为正确结果的度量方式
    P r ( p r e c i s i o n ) = T P T P + F P Pr(precision)=\frac{TP}{TP+FP} Pr(precision)=TP+FPTP
  • 召回率 (Recall,Re): 又称TPR关注所有正确识别结果中的正样本占比
    R e ( R e c a l l ) = T P T P + F N Re(Recall)=\frac{TP}{TP+FN} Re(Recall)=TP+FNTP
  • F1(F1-score) : F1分数,一个综合了Recall和Precision的评价β,通常取1
    ( 1 + β 2 ) ∗ P r ∗ R e β 2 ∗ P r + R e \frac{(1+β^2)*Pr*Re}{β^2*Pr+Re} β2∗Pr+Re(1+β2)∗Pr∗Re

参考资料:https://github.com/TheDatumOrg/VUS

相关推荐
冰西瓜6007 小时前
从项目入手机器学习——鸢尾花分类
人工智能·机器学习·分类·数据挖掘
叁散12 小时前
实验二:船舶雷达感知数据分析与利用
数据挖掘·数据分析
一招定胜负19 小时前
项目案例:卷积神经网络实现食物图片分类代码详细解析
人工智能·分类·cnn
Simon_lca21 小时前
迈向绿色未来:全球手机品牌ESG实践深度剖析——聚焦供应链减排与零碳转型
大数据·人工智能·经验分享·智能手机·分类·制造
ASD123asfadxv21 小时前
基于YOLOv8-FasterNet的液压阀块端盖表面缺陷检测与分类
yolo·分类·数据挖掘
算法与编程之美21 小时前
损失函数与分类精度的关系
人工智能·算法·机器学习·分类·数据挖掘
天呐草莓21 小时前
聚类(Clustering)算法
人工智能·python·算法·机器学习·数据挖掘·数据分析·聚类
小龙21 小时前
【开源项目】核心评价指标的动态关联性分析与可视化实验 —— 以多分类文本任(代码+结果分析)
人工智能·分类·数据挖掘·开源项目·模型指标
2401_841495641 天前
自然语言处理实战——基于 BP 神经网络的中文文本情感分类
人工智能·python·神经网络·机器学习·自然语言处理·分类·情感分类
core5121 天前
AI 任务分类:人工智能到底能干啥?
人工智能·分类·生成式ai·聚类·强化学习·无监督学习·有监督学习