[2025分类&时序异常检测指标R-AUC与VUS]

梳理了一下分类中常见的指标,这些指标与时序异常检测 中新提出的A-RUC与VUS之间的关系

  • 真正例(True Positive,TP): 被正确识别为正样本的数量。
  • 真负例(True Negative,TN): 被正确识别为负样本的数量。
  • 假正例(False Positive ,FP): 被错误识为正样本数量
  • 假负例(False Negative,FN): 被错误识别为负样本数量
  • 精确度 (Precision,Pr): 关注所有识别为正样本中的真实正样本占比,此外还有Precison@K,即取前K为都为正确结果的度量方式
    P r ( p r e c i s i o n ) = T P T P + F P Pr(precision)=\frac{TP}{TP+FP} Pr(precision)=TP+FPTP
  • 召回率 (Recall,Re): 又称TPR关注所有正确识别结果中的正样本占比
    R e ( R e c a l l ) = T P T P + F N Re(Recall)=\frac{TP}{TP+FN} Re(Recall)=TP+FNTP
  • F1(F1-score) : F1分数,一个综合了Recall和Precision的评价β,通常取1
    ( 1 + β 2 ) ∗ P r ∗ R e β 2 ∗ P r + R e \frac{(1+β^2)*Pr*Re}{β^2*Pr+Re} β2∗Pr+Re(1+β2)∗Pr∗Re

参考资料:https://github.com/TheDatumOrg/VUS

相关推荐
数据分享者10 小时前
猫狗图像分类数据集-21616张标准化128x128像素JPEG图像-适用于计算机视觉教学研究与深度学习模型训练-研究人员、开发者和学生提供实验平台
深度学习·计算机视觉·分类
duyinbi751710 小时前
【计算机视觉实践】:基于YOLOv8-BIMAFPN的海洋漏油事件检测与分类系统实现_2
yolo·计算机视觉·分类
CS创新实验室12 小时前
正态分布的深入学习:从数学发现到自然法则的演变
学习·数据挖掘·数据分析·统计学·正态分布
duyinbi751713 小时前
YOLO11-MAN:多品种植物叶片智能识别与分类详解
人工智能·分类·数据挖掘
dear_bi_MyOnly14 小时前
数据分析常用操作汇总
大数据·python·数据挖掘·数据分析·学习方法
龙腾AI白云14 小时前
10分钟了解向量数据库(4)
人工智能·数据挖掘
lechcat14 小时前
多角色协同巡检流程设计技术教程
大数据·数据库·数据挖掘
FL162386312914 小时前
七十四种不同鸟类图像分类数据集3995张74类别已划分好训练验证测试集
人工智能·分类·数据挖掘
小王毕业啦14 小时前
2024年-全国地级市之间地理距离矩阵数据
大数据·人工智能·数据挖掘·数据分析·社科数据·实证数据·地理距离矩阵
数智大号15 小时前
艾利特×迈幸机器人:引领智能操作新范式,开启具身智能新纪元
人工智能·数据挖掘