[2025分类&时序异常检测指标R-AUC与VUS]

梳理了一下分类中常见的指标,这些指标与时序异常检测 中新提出的A-RUC与VUS之间的关系

  • 真正例(True Positive,TP): 被正确识别为正样本的数量。
  • 真负例(True Negative,TN): 被正确识别为负样本的数量。
  • 假正例(False Positive ,FP): 被错误识为正样本数量
  • 假负例(False Negative,FN): 被错误识别为负样本数量
  • 精确度 (Precision,Pr): 关注所有识别为正样本中的真实正样本占比,此外还有Precison@K,即取前K为都为正确结果的度量方式
    P r ( p r e c i s i o n ) = T P T P + F P Pr(precision)=\frac{TP}{TP+FP} Pr(precision)=TP+FPTP
  • 召回率 (Recall,Re): 又称TPR关注所有正确识别结果中的正样本占比
    R e ( R e c a l l ) = T P T P + F N Re(Recall)=\frac{TP}{TP+FN} Re(Recall)=TP+FNTP
  • F1(F1-score) : F1分数,一个综合了Recall和Precision的评价β,通常取1
    ( 1 + β 2 ) ∗ P r ∗ R e β 2 ∗ P r + R e \frac{(1+β^2)*Pr*Re}{β^2*Pr+Re} β2∗Pr+Re(1+β2)∗Pr∗Re

参考资料:https://github.com/TheDatumOrg/VUS

相关推荐
Christo313 分钟前
2022-《Deep Clustering: A Comprehensive Survey》
人工智能·算法·机器学习·数据挖掘
serve the people39 分钟前
TensorFlow 2.0 手写数字分类教程之SparseCategoricalCrossentropy 核心原理(一)
人工智能·分类·tensorflow
LDG_AGI3 小时前
【推荐系统】深度学习训练框架(十七):TorchRec之KeyedJaggedTensor
人工智能·pytorch·深度学习·机器学习·数据挖掘·embedding
serve the people3 小时前
TensorFlow 2.0 手写数字分类教程之SparseCategoricalCrossentropy 核心原理(二)
人工智能·分类·tensorflow
Christo34 小时前
2024《A Rapid Review of Clustering Algorithms》
人工智能·算法·机器学习·数据挖掘
listhi5204 小时前
支持向量机多分类解决方案
算法·支持向量机·分类
十三画者4 小时前
【文献分享】vConTACT3机器学习能够实现可扩展且系统的病毒分类体系的构建
人工智能·算法·机器学习·数据挖掘·数据分析
wfeqhfxz25887824 小时前
基于YOLOv10n的热带海洋蝴蝶鱼物种识别与分类系统_P3456数据集训练_1
yolo·分类·数据挖掘
爱看科技4 小时前
微美全息(WIMI.US)突破性精简经典-量子混合神经网络模型助力图像智能分类
人工智能·神经网络·分类
serve the people5 小时前
TensorFlow 2.0 手写数字分类教程之SparseCategoricalCrossentropy 核心原理(三)
人工智能·分类·tensorflow