[2025分类&时序异常检测指标R-AUC与VUS]

梳理了一下分类中常见的指标,这些指标与时序异常检测 中新提出的A-RUC与VUS之间的关系

  • 真正例(True Positive,TP): 被正确识别为正样本的数量。
  • 真负例(True Negative,TN): 被正确识别为负样本的数量。
  • 假正例(False Positive ,FP): 被错误识为正样本数量
  • 假负例(False Negative,FN): 被错误识别为负样本数量
  • 精确度 (Precision,Pr): 关注所有识别为正样本中的真实正样本占比,此外还有Precison@K,即取前K为都为正确结果的度量方式
    P r ( p r e c i s i o n ) = T P T P + F P Pr(precision)=\frac{TP}{TP+FP} Pr(precision)=TP+FPTP
  • 召回率 (Recall,Re): 又称TPR关注所有正确识别结果中的正样本占比
    R e ( R e c a l l ) = T P T P + F N Re(Recall)=\frac{TP}{TP+FN} Re(Recall)=TP+FNTP
  • F1(F1-score) : F1分数,一个综合了Recall和Precision的评价β,通常取1
    ( 1 + β 2 ) ∗ P r ∗ R e β 2 ∗ P r + R e \frac{(1+β^2)*Pr*Re}{β^2*Pr+Re} β2∗Pr+Re(1+β2)∗Pr∗Re

参考资料:https://github.com/TheDatumOrg/VUS

相关推荐
databook6 小时前
数据分析师的“水晶球”:时间序列分析
python·数据挖掘·数据分析
玄同76511 小时前
Python 流程控制:LLM 批量推理与 API 限流处理
服务器·人工智能·python·深度学习·自然语言处理·数据挖掘·知识图谱
_codemonster13 小时前
AI大模型入门到实战系列(十八)微调模型实现分类
人工智能·机器学习·分类
计算机程序设计小李同学14 小时前
基于贝叶斯分类算法的垃圾邮件筛选器开发
人工智能·分类·数据挖掘
天呐草莓1 天前
集成学习 (ensemble learning)
人工智能·python·深度学习·算法·机器学习·数据挖掘·集成学习
十三画者2 天前
【文献分享】PepQueryMHC:基于免疫肽组学数据实现肿瘤抗原的快速全面筛选
数据挖掘·数据分析
QuiteCoder2 天前
机器学习视角下的鸢尾花形态学分类与自动化流水线架构研究报告
机器学习·分类·自动化
超自然祈祷2 天前
从数据挖掘到人工智能的脉络地图
人工智能·机器学习·数据挖掘·数据分析
甄心爱学习2 天前
如何计算数据立方体中聚合单元的个数?
数据挖掘·数据立方体
啊阿狸不会拉杆2 天前
《数字图像处理》实验8-图像识别与分类
图像处理·人工智能·算法·分类·数据挖掘·数字图像处理