[2025分类&时序异常检测指标R-AUC与VUS]

梳理了一下分类中常见的指标,这些指标与时序异常检测 中新提出的A-RUC与VUS之间的关系

  • 真正例(True Positive,TP): 被正确识别为正样本的数量。
  • 真负例(True Negative,TN): 被正确识别为负样本的数量。
  • 假正例(False Positive ,FP): 被错误识为正样本数量
  • 假负例(False Negative,FN): 被错误识别为负样本数量
  • 精确度 (Precision,Pr): 关注所有识别为正样本中的真实正样本占比,此外还有Precison@K,即取前K为都为正确结果的度量方式
    P r ( p r e c i s i o n ) = T P T P + F P Pr(precision)=\frac{TP}{TP+FP} Pr(precision)=TP+FPTP
  • 召回率 (Recall,Re): 又称TPR关注所有正确识别结果中的正样本占比
    R e ( R e c a l l ) = T P T P + F N Re(Recall)=\frac{TP}{TP+FN} Re(Recall)=TP+FNTP
  • F1(F1-score) : F1分数,一个综合了Recall和Precision的评价β,通常取1
    ( 1 + β 2 ) ∗ P r ∗ R e β 2 ∗ P r + R e \frac{(1+β^2)*Pr*Re}{β^2*Pr+Re} β2∗Pr+Re(1+β2)∗Pr∗Re

参考资料:https://github.com/TheDatumOrg/VUS

相关推荐
华科云商xiao徐14 小时前
Linux环境下爬虫程序的部署难题与系统性解决方案
爬虫·数据挖掘·数据分析
木木子999915 小时前
不同行业视角下的数据分析
数据挖掘·数据分析
SHUIPING_YANG17 小时前
如何让dify分类器更加精准的分类?
人工智能·分类·数据挖掘
Christo31 天前
TFS-2018《On the convergence of the sparse possibilistic c-means algorithm》
人工智能·算法·机器学习·数据挖掘
用户Taobaoapi20141 天前
京东店铺所有商品API技术开发文档
大数据·数据挖掘·数据分析
总有刁民想爱朕ha1 天前
车牌模拟生成器:Python3.8+Opencv代码实现与商业应用前景(C#、python 开发包SDK)
开发语言·python·数据挖掘
Stestack1 天前
人工智能常见分类
人工智能·分类·数据挖掘
华科云商xiao徐2 天前
告别IP被封!分布式爬虫的“隐身”与“分身”术
爬虫·数据挖掘·数据分析
未来之窗软件服务2 天前
商业软件开发入门到精通之路-东方仙盟
人工智能·数据挖掘·仙盟创梦ide·东方仙盟·商业软件开发入门
民乐团扒谱机2 天前
逻辑回归算法干货详解:从原理到 MATLAB 可视化实现
数学建模·matlab·分类·数据挖掘·回归·逻辑回归·代码分享