Apple M1 ARM MacBook 安装 Apache TVM

一、前置准备

  1. Apple Silicon MacBook

    本文以 Apple M1/M2 为例,M3 及后续版本同理。

  2. 已安装 Homebrew

    macOS 上的包管理器,可前往 Homebrew 官网 查看安装指引。

  3. 已安装 Anaconda 或 Miniforge

    • 确保 Conda 是 ARM 版本 (通过 conda info | grep platform 验证应为 osx-arm64)。

二、创建并激活 Conda 环境

  1. 在终端创建环境(Python 3.8 为示例;TVM 建议 3.7 或 3.8 以避免不兼容):

    bash 复制代码
    conda create --name tvm python=3.8 -y
    conda activate tvm
  2. 安装必要的 Python 包

    bash 复制代码
    conda install -y numpy decorator attrs psutil tornado xgboost cloudpickle

三、安装系统依赖

  1. 使用 Homebrew 安装必要的依赖:

    bash 复制代码
    brew install llvm cmake ninja git
  2. 确保 LLVM 处于最新版本,并可以通过 llvm-config --version 验证安装是否成功。


四、下载并配置 TVM

  1. 克隆 TVM 源码并初始化子模块:

    bash 复制代码
    git clone --recursive https://github.com/apache/tvm tvm
    cd tvm
    git submodule update --init --recursive
  2. 创建 build 目录并复制默认配置文件:

    bash 复制代码
    mkdir build
    cp cmake/config.cmake build/
    cd build
  3. 修改 config.cmake 以启用 LLVM 支持:

    打开 build/config.cmake,找到

    cmake 复制代码
    set(USE_LLVM OFF)

    替换为

    cmake 复制代码
    set(USE_LLVM ON)

五、编译并安装 TVM

  1. 设置 LLVM 相关环境变量(让 CMake 能够找到 LLVM):

    bash 复制代码
    export LLVM_DIR=$(brew --prefix llvm)/lib/cmake/llvm
    export PATH=$(brew --prefix llvm)/bin:$PATH
    
    # 可选:永久添加到 ~/.zshrc 或 ~/.bashrc
    echo 'export LLVM_DIR=$(brew --prefix llvm)/lib/cmake/llvm' >> ~/.zshrc
    echo 'export PATH=$(brew --prefix llvm)/bin:$PATH' >> ~/.zshrc
    source ~/.zshrc
  2. 使用 CMake 配置编译,并将安装路径指定到当前 Conda 环境:

    bash 复制代码
    cmake .. -G Ninja \
        -DCMAKE_OSX_ARCHITECTURES=arm64 \
        -DCMAKE_INSTALL_PREFIX=$CONDA_PREFIX
    • -DCMAKE_OSX_ARCHITECTURES=arm64 指定 Apple Silicon 架构
    • -DCMAKE_INSTALL_PREFIX=$CONDA_PREFIX 指定安装到 Conda 环境
  3. 编译并安装

    bash 复制代码
    ninja -j$(sysctl -n hw.ncpu)
    ninja install
    • -j$(sysctl -n hw.ncpu) 表示使用所有可用 CPU 核心来加速编译

六、安装 TVM 的 Python 绑定

  1. 在 Conda 环境内安装 Python 绑定

    bash 复制代码
    cd ../python
    pip install -e .
    • -e . 代表开发模式安装,后续修改源码可实时生效。
  2. 设置环境变量(可选,如果需要 PYTHONPATH 自动找到源码):

    bash 复制代码
    export TVM_HOME=~/你的/tvm路径
    export PYTHONPATH=$TVM_HOME/python:${PYTHONPATH}
    
    # 可选:写入 ~/.zshrc 或 ~/.bashrc
    echo 'export TVM_HOME=~/GitHub/tvm' >> ~/.zshrc
    echo 'export PYTHONPATH=$TVM_HOME/python:${PYTHONPATH}' >> ~/.zshrc
    source ~/.zshrc

七、验证安装

  1. 命令行测试
    回到命令行(已激活 tvm 环境),执行:

    bash 复制代码
    python -c "import tvm; print(tvm.__version__)"

若能正常输出 TVM 版本号,说明安装成功。

  1. Jupyter Notebook 中使用
    • 如果想在 Notebook 中使用该环境:

      bash 复制代码
      conda activate tvm
      pip install ipykernel
      python -m ipykernel install --user --name tvm --display-name "Python (tvm)"
    • 打开 Notebook 后,选择内核 为 "Python (tvm)",然后执行:

      python 复制代码
      import tvm
      print(tvm.__version__)
    • 若能正确输出版本号,表明 Notebook 中也可正常使用。

相关推荐
vortex58 小时前
Apache 配置文件提权的实战思考
apache
学不动CV了12 小时前
ARM单片机启动流程(二)(详细解析)
c语言·arm开发·stm32·单片机·51单片机
涤生大数据17 小时前
Apache Spark 4.0:将大数据分析提升到新的水平
数据分析·spark·apache·数据开发
XMAIPC_Robot18 小时前
基于ARM+FPGA的光栅尺精密位移加速度测试解决方案
arm开发·人工智能·fpga开发·自动化·边缘计算
学不动CV了19 小时前
数据结构---链表结构体、指针深入理解(三)
c语言·arm开发·数据结构·stm32·单片机·链表
szxinmai主板定制专家21 小时前
【精密测量】基于ARM+FPGA的多路光栅信号采集方案
服务器·arm开发·人工智能·嵌入式硬件·fpga开发
Paper_Love21 小时前
x86-64_windows交叉编译arm_linux程序
arm开发·windows
奇文怪式1 天前
VSCode+arm-none-eabi-gcc交叉编译+CMake构建+OpenOCD(基于Raspberry Pico RP2040)
arm开发·ide·vscode·rp2040
Imagine Miracle1 天前
Ubuntu for ARM 更换为阿里云镜像源
arm开发·ubuntu·阿里云
wwwlyj1233211 天前
arm 精准总线错误与非精准总线错误
arm开发