自定义数据集 使用pytorch框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测

1. 数据准备

首先,我们需要一些示例数据。在这个例子中,我们将生成一些简单的二维数据点,并为其分配标签。

2. 定义逻辑回归模型

接下来,我们定义一个简单的逻辑回归模型。

3. 训练模型

定义损失函数和优化器,然后进行模型训练。

4. 保存模型

训练完成后,我们可以保存模型的状态字典。

5. 加载模型并进行预测

加载保存的模型,并进行预测。

python 复制代码
import torch
import torch.nn as nn
import torch.optim as optim
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler

# 生成一些示例数据
X, y = make_classification(n_samples=1000, n_features=2, n_classes=2, random_state=42)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 标准化数据
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)

# 转换为PyTorch张量
X_train_tensor = torch.tensor(X_train, dtype=torch.float32)
y_train_tensor = torch.tensor(y_train, dtype=torch.long)
X_test_tensor = torch.tensor(X_test, dtype=torch.float32)
y_test_tensor = torch.tensor(y_test, dtype=torch.long)

# 定义逻辑回归模型
class LogisticRegression(nn.Module):
    def __init__(self, input_dim):
        super(LogisticRegression, self).__init__()
        self.linear = nn.Linear(input_dim, 1)
        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        out = self.linear(x)
        out = self.sigmoid(out)
        return out.squeeze(1)

# 初始化模型、损失函数和优化器
input_dim = X_train_tensor.shape[1]
model = LogisticRegression(input_dim)
criterion = nn.BCELoss()
optimizer = optim.SGD(model.parameters(), lr=0.01)

# 将标签转换为适合BCELoss的格式(0和1)
y_train_tensor_float = y_train_tensor.float()

# 训练模型
num_epochs = 100
for epoch in range(num_epochs):
    model.train()
    outputs = model(X_train_tensor)
    loss = criterion(outputs, y_train_tensor_float)
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
    if (epoch+1) % 10 == 0:
        print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')

# 保存模型
torch.save(model.state_dict(), 'logistic_regression_model.pth')

# 加载模型
loaded_model = LogisticRegression(input_dim)
loaded_model.load_state_dict(torch.load('logistic_regression_model.pth'))
loaded_model.eval()

# 进行预测
with torch.no_grad():
    predictions = (loaded_model(X_test_tensor) > 0.5).long()

# 计算准确率
accuracy = (predictions == y_test_tensor).sum().item() / y_test_tensor.size(0)
print(f'Accuracy: {accuracy:.4f}')
相关推荐
adam_life1 小时前
【P8306 【模板】字典树】
数据结构·算法·字典树·trie·哈希表··结构体
Wenhao.1 小时前
LeetCode Hot100 腐烂的橘子
算法·leetcode·职场和发展
行走的bug...1 小时前
支持向量机
算法·机器学习·支持向量机
信号处理学渣1 小时前
matlab之将一个升序数组按照元素值连续与否分成多组
数据结构·算法·matlab
大工mike2 小时前
代码随想录算法训练营第三十四天 | 198.打家劫舍 213.打家劫舍II 337.打家劫舍III
数据结构·算法·动态规划
用户992441031562 小时前
TRAE SOLO 赋能大模型工程化实践:从模型选型到安全部署的一站式实战指南
算法
goyeer2 小时前
05.[SAP ABAP] ABAP中的运算符
算法·sap·abap·运算符
MM_MS2 小时前
C# 线程与并发编程完全指南:从基础到高级带详细注释版(一篇读懂)
开发语言·机器学习·计算机视觉·c#·简单工厂模式·visual studio
Dfreedom.2 小时前
机器学习模型误差深度解读:从三类来源到偏差-方差权衡
人工智能·深度学习·机器学习·误差·偏差方差权衡
NAGNIP2 小时前
面试官:BatchNorm、LayerNorm、GroupNorm、InstanceNorm 有什么本质区别?
算法·面试