七。自定义数据集 使用tensorflow框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测

import tensorflow as tf

import numpy as np

自定义数据集类

class CustomDataset(tf.data.Dataset):

def init(self, x_data, y_data):

self.x_data = tf.convert_to_tensor(x_data, dtype=tf.float32)

self.y_data = tf.convert_to_tensor(y_data, dtype=tf.float32)

def iter(self):

for i in range(len(self.x_data)):

yield (self.x_data[i], self.y_data[i])

逻辑回归模型

class LogisticRegressionModel(tf.keras.Model):

def init(self, input_dim):

super(LogisticRegressionModel, self).init()

self.linear = tf.keras.layers.Dense(1, input_shape=(input_dim,), activation='sigmoid')

def call(self, x):

return self.linear(x)

创建数据集

x_data = np.array([[1], [2], [3], [4], [5]], dtype=np.float32)

y_data = np.array([[0], [0], [1], [1], [1]], dtype=np.float32)

dataset = CustomDataset(x_data, y_data)

创建数据加载器

dataloader = dataset.batch(2).shuffle(100).repeat()

创建模型、损失函数和优化器

model = LogisticRegressionModel(input_dim=1)

loss_object = tf.keras.losses.BinaryCrossentropy()

optimizer = tf.keras.optimizers.SGD(learning_rate=0.01)

训练模型

epochs = 100

for epoch in range(epochs):

for x_batch, y_batch in dataloader:

with tf.GradientTape() as tape:

predictions = model(x_batch)

loss = loss_object(y_batch, predictions)

gradients = tape.gradient(loss, model.trainable_variables)

optimizer.apply_gradients(zip(gradients, model.trainable_variables))

if (epoch+1) % 10 == 0:

print(f'Epoch [{epoch+1}/{epochs}], Loss: {loss.numpy():.4f}')

保存模型

model.save('logistic_regression_model.h5')

加载模型

model = tf.keras.models.load_model('logistic_regression_model.h5')

进行预测

x_test = np.array([[6], [7], [8]], dtype=np.float32)

y_pred = model.predict(x_test)

print('预测值:', y_pred)

相关推荐
拓端研究室TRL12 分钟前
Python与MySQL网站排名数据分析及多层感知机MLP、机器学习优化策略和地理可视化应用|附AI智能体数据代码
人工智能·python·mysql·机器学习·数据分析
小哈里17 分钟前
【pypi镜像源】使用devpi实现python镜像源代理(缓存加速,私有仓库,版本控制)
开发语言·python·缓存·镜像源·pypi
全栈派森25 分钟前
云存储最佳实践
后端·python·程序人生·flask
ayiya_Oese29 分钟前
[模型部署] 1. 模型导出
图像处理·python·深度学习·神经网络·视觉检测
电商数据girl30 分钟前
酒店旅游类数据采集API接口之携程数据获取地方美食品列表 获取地方美餐馆列表 景点评论
java·大数据·开发语言·python·json·旅游
天天打码30 分钟前
python版本管理工具-pyenv轻松切换多个Python版本
开发语言·python
楠奕37 分钟前
python中使用neo4j
开发语言·python·neo4j
zybsjn42 分钟前
后端系统做国际化改造,生成多语言包
java·python·c#
南斯拉夫的铁托1 小时前
labelimg安装及使用指南(yolo)
开发语言·python·yolo
不许哈哈哈1 小时前
基于百度云ORC与阿里大语言模型的自动评分系统
python·语言模型·百度云