七。自定义数据集 使用tensorflow框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测

import tensorflow as tf

import numpy as np

自定义数据集类

class CustomDataset(tf.data.Dataset):

def init(self, x_data, y_data):

self.x_data = tf.convert_to_tensor(x_data, dtype=tf.float32)

self.y_data = tf.convert_to_tensor(y_data, dtype=tf.float32)

def iter(self):

for i in range(len(self.x_data)):

yield (self.x_data[i], self.y_data[i])

逻辑回归模型

class LogisticRegressionModel(tf.keras.Model):

def init(self, input_dim):

super(LogisticRegressionModel, self).init()

self.linear = tf.keras.layers.Dense(1, input_shape=(input_dim,), activation='sigmoid')

def call(self, x):

return self.linear(x)

创建数据集

x_data = np.array([[1], [2], [3], [4], [5]], dtype=np.float32)

y_data = np.array([[0], [0], [1], [1], [1]], dtype=np.float32)

dataset = CustomDataset(x_data, y_data)

创建数据加载器

dataloader = dataset.batch(2).shuffle(100).repeat()

创建模型、损失函数和优化器

model = LogisticRegressionModel(input_dim=1)

loss_object = tf.keras.losses.BinaryCrossentropy()

optimizer = tf.keras.optimizers.SGD(learning_rate=0.01)

训练模型

epochs = 100

for epoch in range(epochs):

for x_batch, y_batch in dataloader:

with tf.GradientTape() as tape:

predictions = model(x_batch)

loss = loss_object(y_batch, predictions)

gradients = tape.gradient(loss, model.trainable_variables)

optimizer.apply_gradients(zip(gradients, model.trainable_variables))

if (epoch+1) % 10 == 0:

print(f'Epoch [{epoch+1}/{epochs}], Loss: {loss.numpy():.4f}')

保存模型

model.save('logistic_regression_model.h5')

加载模型

model = tf.keras.models.load_model('logistic_regression_model.h5')

进行预测

x_test = np.array([[6], [7], [8]], dtype=np.float32)

y_pred = model.predict(x_test)

print('预测值:', y_pred)

相关推荐
用户27784491049937 小时前
借助DeepSeek智能生成测试用例:从提示词到Excel表格的全流程实践
人工智能·python
JavaEdge在掘金9 小时前
ssl.SSLCertVerificationError报错解决方案
python
我不会编程55510 小时前
Python Cookbook-5.1 对字典排序
开发语言·数据结构·python
老歌老听老掉牙10 小时前
平面旋转与交线投影夹角计算
python·线性代数·平面·sympy
满怀101510 小时前
Python入门(7):模块
python
无名之逆10 小时前
Rust 开发提效神器:lombok-macros 宏库
服务器·开发语言·前端·数据库·后端·python·rust
你觉得20510 小时前
哈尔滨工业大学DeepSeek公开课:探索大模型原理、技术与应用从GPT到DeepSeek|附视频与讲义下载方法
大数据·人工智能·python·gpt·学习·机器学习·aigc
啊喜拔牙10 小时前
1. hadoop 集群的常用命令
java·大数据·开发语言·python·scala
__lost12 小时前
Pysides6 Python3.10 Qt 画一个时钟
python·qt