在 PyTorch 中理解词向量,将单词转换为有用的向量表示

你要是想构建一个大型语言模型,首先得掌握词向量的概念。幸运的是,这个概念很简单,也是本系列文章的一个完美起点。

那么,假设你有一堆单词,它可以只是一个简单的字符串数组。

animals = ["cat", "dog", "rat", "pig"]

你没法直接用单词进行数学运算,所以必须先把它们转换成数字。最简单的方法就是用它们在数组中的索引值。

animal_to_idx = {animal: idx for idx, animal in enumerate(animals)}

animal_to_idx

Output:

当然,等你把数学运算做完,你还需要把索引转换回对应的单词。可以这样做:

idx_to_animal = {idx: animal for animal, idx in animal_to_idx.items()}

idx_to_animal

Output:

用索引来表示单词,在自然语言处理中一般不是个好主意。问题在于,索引会暗示单词之间存在某种顺序关系,而实际上并没有。

比如,我们的数据里,猫和猪之间并没有固有的关系,狗和老鼠之间也没有。但是,使用索引后,看起来猫离猪"很远",而狗似乎"更接近"老鼠,仅仅因为它们在数组中的位置不同。这些数值上的距离可能会暗示一些实际上并不存在的模式。同样,它们可能会让人误以为这些动物之间存在基于大小或相似度的关系,而这在这里完全没有意义。

一个更好的方法是使用独热编码(one-hot encoding)。独热向量是一个数组,其中只有一个元素是 1(表示"激活"),其他所有元素都是 0。这种表示方式可以完全消除单词之间的错误排序关系。

让我们把单词转换成独热向量:

import numpy as np

n_animals = len(animals)

animal_to_onehot = {}

for idx, animal in enumerate(animals):

one_hot = np.zeros(n_animals, dtype=int)

one_hot[idx] = 1

animal_to_onehot[animal] = one_hot

animal_to_onehot

Output:

{

'cat': array([1, 0, 0, 0]),

'dog': array([0, 1, 0, 0]),

'rat': array([0, 0, 1, 0]),

'pig': array([0, 0, 0, 1])

}

可以看到,现在单词之间没有任何隐含的关系了。

独热编码的缺点是,它是一种非常稀疏的表示,只适用于单词数量较少的情况。想象一下,如果你有 10,000 个单词,每个编码都会有 9,999 个零和一个 1,太浪费内存了,存那么多零干嘛......

**是时候创建更密集的向量表示了。换句话说,我们现在要做词向量(word embeddings)**了。

词向量是一种密集向量(dense vector),其中大多数(甚至所有)值都不是零。在机器学习,尤其是自然语言处理和推荐系统中,密集向量可以用来紧凑而有意义地表示单词(或句子、或其他实体)的特征。更重要的是,它们可以捕捉这些特征之间的有意义关系。

举个例子,我们创建一个词向量,其中每个单词用 2 个特征表示,而总共有 4 个单词。

用 PyTorch 创建词向量非常简单。我们只需要使用 nn.Embedding 层。你可以把它想象成一个查找表,其中行代表每个唯一单词,而列代表该单词的特征(即单词的密集向量)。

import torch

import torch.nn as nn

embedding_layer = nn.Embedding(num_embeddings=4, embedding_dim=2)

好,现在我们把单词的索引转换成词向量。这几乎不费吹灰之力,因为我们只需要把索引传给 nn.Embedding 层就行了。

indices = torch.tensor(np.arange(0, len(animals)))

indices

Output:

tensor([0, 1, 2, 3])

embeddings = embedding_layer(indices)

embeddings

Output:

tensor([[ 1.6950, -2.7905],

[ 2.4086, -0.1779],

[ 0.7402, 0.0955],

[-0.5155, 0.0738]], grad_fn= )

现在,我们可以用索引查看每个单词的词向量了。

for animal, _ in animal_to_idx.items():

print(f"{animal}'s embedding is {embeddings[animal_to_idx[animal]]}")

Output:

cat's embedding is tensor([ 1.6950, -2.7905], grad_fn= )

dog's embedding is tensor([ 2.4086, -0.1779], grad_fn= )

rat's embedding is tensor([0.7402, 0.0955], grad_fn= )

pig's embedding is tensor([-0.5155, 0.0738], grad_fn= )

每个单词都有两个特征------正是我们想要的结果。

目前这些数值没啥实际意义,因为 nn.Embedding 层还没有经过训练。但一旦它被适当地训练了,这些特征就会变得有意义。

注意:

这些特征对模型来说非常关键,但对人类来说可能永远不会"有意义"。它们代表的是通过训练学到的抽象特征。对我们来说,这些特征看起来可能是随机的、毫无意义的,但对一个训练好的模型来说,它们能够捕捉到重要的模式和关系,使其能够有效地理解和处理数据。

在本系列的下一篇文章中,我们将学习如何训练词向量模型。

相关推荐
果冻人工智能18 小时前
让我们从零开始使用PyTorch构建一个轻量级的词嵌入模型
#人工智能·#ai代理·#ai应用·#ai员工·#神经网络·#ai
果冻人工智能3 天前
跟着蚂蚁走,它们知道路:用 ACO-ToT 增强 LLM 推理能力
#人工智能·#ai代理·#ai应用·#ai员工·#神经网络·#ai
果冻人工智能7 天前
基于生成式AI的访问控制, 迁移传统安全策略到基于LLM的风险分类器
#人工智能·#ai代理·#ai应用·#ai员工·#cnn·#神经网络·#ai
果冻人工智能1 个月前
人类讨厌AI的缺点,其实自己也有,是时候反思了。
#人工智能·#ai代理·#ai应用·#ai员工·#cnn·#神经网络·#ai
果冻人工智能1 个月前
您的公司需要小型语言模型
#人工智能·#ai代理·#ai应用·#ai员工·#cnn·#神经网络·#ai
果冻人工智能1 个月前
主动式AI(代理式)与生成式AI的关键差异与影响
#人工智能·#ai代理·#ai应用·#ai员工·#cnn·#chatgpt·#神经网络·#ai
果冻人工智能1 个月前
创建用于预测序列的人工智能模型,用Keras Tuner探索模型的超参数。
#人工智能·#ai代理·#ai应用·#ai员工·#cnn·#chatgpt·#神经网络·#ai
果冻人工智能1 个月前
创建用于预测序列的人工智能模型,调整模型的超参数。
#人工智能·#ai代理·#ai应用·#ai员工·#cnn·#chatgpt·#神经网络·#ai
果冻人工智能2 个月前
创建用于预测序列的人工智能模型,评估模型的能力。
#人工智能·#ai代理·#ai应用·#ai员工·#cnn·#chatgpt·#神经网络·#ai