分布式id探索

一、为什么要使用分布式id?

随着数据量增加,数据需要进行水平拆分,但表自增id无法满足唯一性;

二、分布式id的特点

1唯一性

2 趋势递增、单调递增(数据库中存放的数据结构数据从小到大有序排列),如果id不是单调递增,插入数据时为了维持平衡需要不停的做叶子节点的分裂与合并;

三、常用分布式id生成算法

1 uuid:32位16进制数字,36个字符;

优点:性能高,本地生成没有网络消耗;

缺点:过长不易于存储,信息不安全,基于MAC地址生成可能会造成MAC地址泄露

2 雪花算法:

第0位:符号位,始终为0,没用

第1~41位:用来表示时间戳,单位毫秒

第42~52位:前五位机房id,后五位机器id

第53~64位:用来表示序列号,序列号为自增,代表单台机器每秒能够产生的最大id 2 的12次方=4096;

优点:毫秒数在高位,自增序列在低位,id趋势递增;不依赖三方系统,稳定性高;

缺点:强依赖机器时钟,如果机器时钟回拨会导致重复id生成;(解决方法:缓存历史序列号,使用历史序列号直到它耗尽;等待时钟恢复;使用备用时间戳,即将上一次的时间戳加上一个安全间隔,防止重复生成;报警机制,严重时钟回拨时,人工干预;)

3 mysql用一张表专门生成id(读写磁盘网络开销大扩展性差)

4 redis生成(redis持久化会有丢失可能重复)

四、美团leaf算法

1 segment数据库方案,根据数据库中的表进行获取

批量获取分布式id,每次获取数量自定义;

缺点:id号不够随机;当批量获取的数据库id用尽时会产生毛刺现象;

2 雪花算法方案

依赖zk生成workid解决机器过多的问题;根据不同的方案解决始终回拨问题;

解决方案,新启动的机器通过拉去所有机器时间计算平均值,并与本机时间戳比较,判断当前时间戳是否符合;(缓存历史序列号,使用历史序列号直到它耗尽;等待时钟恢复;使用备用时间戳,即将上一次的时间戳加上一个安全间隔,防止重复生成;报警机制,严重时钟回拨时,人工干预;)

相关推荐
yh云想36 分钟前
《从入门到精通:Kafka核心原理全解析》
分布式·kafka
ModelWhale5 小时前
“大模型”技术专栏 | 浅谈基于 Kubernetes 的 LLM 分布式推理框架架构:概览
分布式·kubernetes·大模型
愿天堂没有C++6 小时前
C++——分布式
分布式
UPToZ6 小时前
【Docker】搭建一个高性能的分布式对象存储服务 - MinIO
分布式·docker·容器
前端世界18 小时前
鸿蒙任务调度机制深度解析:优先级、时间片、多核与分布式的流畅秘密
分布式·华为·harmonyos
A尘埃19 小时前
金融项目高可用分布式TCC-Transaction(开源框架)
分布式·金融·开源
夜影风20 小时前
RabbitMQ核心架构与应用
分布式·架构·rabbitmq
电商API_180079052471 天前
大规模调用淘宝商品详情 API 的分布式请求调度实践
服务器·数据库·分布式·爬虫
Light601 天前
模型驱动与分布式建模:技术深度与实战落地指南
分布式·生成式ai·元模型·crdt·模型驱动架构·分布式建模
斯普信专业组2 天前
Rabbitmq+STS+discovery_k8s +localpv部署排坑详解
分布式·kubernetes·rabbitmq