PySpark获取Dataframe中所有非ASCII字符

python 复制代码
from pyspark.sql import SparkSession
from pyspark.sql.functions import col, concat_ws, explode, split, coalesce, lit
from pyspark.sql.types import StringType

spark = SparkSession.builder.appName("InvalidCharacterFinder").getOrCreate()

# 假设已存在DataFrame df
# df = ...

# 获取所有字符串类型列名
string_columns = [f.name for f in df.schema.fields if isinstance(f.dataType, StringType)]
result = []

if string_columns:
    # 处理空值并合并字符串列
    non_null_cols = [coalesce(col(c), lit("")).alias(c) for c in string_columns]
    combined_df = df.select(non_null_cols).select(concat_ws("", *string_columns).alias("merged_str"))
    
    # 拆分字符并过滤空字符串
    chars_df = combined_df.withColumn("char", explode(split(col("merged_str"), "")))\
                          .filter(col("char") != "")
    
    # 定义合法字符集合
    allowed_chars = set('abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789!'
                        '"#$%&\'()*+,-./:;<=>?@[]^_`{|}~')
    
    # 收集非法字符并去重
    unique_invalid = chars_df.rdd.map(lambda x: x.char)\
                             .filter(lambda c: c not in allowed_chars)\
                             .distinct()\
                             .collect()
    
    # 按首次出现顺序保留字符(分布式环境无法保证绝对顺序)
    seen = set()
    ordered_result = []
    for char in unique_invalid:
        if char not in seen:
            ordered_result.append(char)
            seen.add(char)
    result = ordered_result

print("非法字符集合:", ''.join(result))

代码说明:

  1. 数据准备:通过DataFrame Schema识别所有字符串类型的列
  2. 空值处理 :使用coalesce函数将NULL转换为空字符串,确保后续字符串合并有效
  3. 列合并 :使用concat_ws将多个字符串列的值合并为单个字符串
  4. 字符拆分:通过split+explode将字符串拆分为单个字符,并过滤空字符
  5. 非法字符过滤:使用RDD操作过滤不在白名单中的字符,并通过distinct去重
  6. 结果处理:使用有序集合保持字符首次出现的顺序(注意:分布式环境下无法保证绝对顺序)

注意事项:

  • 最终结果字符顺序可能与实际数据中的出现顺序不完全一致
  • 白名单包含94个可打印ASCII字符(排除空格和控制字符)
  • 使用RDD操作提升分布式处理性能
  • 最终结果字符串可能包含各类特殊符号、中文、表情符号等非标准ASCII字符
相关推荐
闲人编程3 分钟前
定时任务与周期性调度
分布式·python·wpf·调度·cron·定时人物·周期性
郝学胜-神的一滴14 分钟前
Python变量本质:从指针哲学到Vibe Coding优化
开发语言·c++·python·程序人生
AC赳赳老秦27 分钟前
新能源AI趋势:DeepSeek分析光伏/风电数据,助力2026新能源运维升级
运维·人工智能·python·安全·架构·prometheus·deepseek
智慧化智能化数字化方案30 分钟前
数据治理进阶——解读大数据治理主数据管理规划设计方案【附全文阅读】
大数据·数据治理·主数据管理规划
Hello.Reader32 分钟前
Flink 大状态 Checkpoint 调优让 Checkpoint 跑得稳、恢复追得上
大数据·flink
是做服装的同学32 分钟前
如何选择适合企业的优质服装软件ERP系统?
大数据·经验分享·其他
Elastic 中国社区官方博客37 分钟前
Elasticsearch 9.3 增加 bfloat16 向量 支持
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
Learner__Q1 小时前
GPT模型入门教程:从原理到实现
python·gpt
夕除1 小时前
js--21
java·python·算法
A小码哥1 小时前
Claude 今天发布了 Sonnet 4.6, 深度对比:sonnet vs Opus,如何选择最适合你的模型?
大数据·数据库·人工智能