PySpark获取Dataframe中所有非ASCII字符

python 复制代码
from pyspark.sql import SparkSession
from pyspark.sql.functions import col, concat_ws, explode, split, coalesce, lit
from pyspark.sql.types import StringType

spark = SparkSession.builder.appName("InvalidCharacterFinder").getOrCreate()

# 假设已存在DataFrame df
# df = ...

# 获取所有字符串类型列名
string_columns = [f.name for f in df.schema.fields if isinstance(f.dataType, StringType)]
result = []

if string_columns:
    # 处理空值并合并字符串列
    non_null_cols = [coalesce(col(c), lit("")).alias(c) for c in string_columns]
    combined_df = df.select(non_null_cols).select(concat_ws("", *string_columns).alias("merged_str"))
    
    # 拆分字符并过滤空字符串
    chars_df = combined_df.withColumn("char", explode(split(col("merged_str"), "")))\
                          .filter(col("char") != "")
    
    # 定义合法字符集合
    allowed_chars = set('abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789!'
                        '"#$%&\'()*+,-./:;<=>?@[]^_`{|}~')
    
    # 收集非法字符并去重
    unique_invalid = chars_df.rdd.map(lambda x: x.char)\
                             .filter(lambda c: c not in allowed_chars)\
                             .distinct()\
                             .collect()
    
    # 按首次出现顺序保留字符(分布式环境无法保证绝对顺序)
    seen = set()
    ordered_result = []
    for char in unique_invalid:
        if char not in seen:
            ordered_result.append(char)
            seen.add(char)
    result = ordered_result

print("非法字符集合:", ''.join(result))

代码说明:

  1. 数据准备:通过DataFrame Schema识别所有字符串类型的列
  2. 空值处理 :使用coalesce函数将NULL转换为空字符串,确保后续字符串合并有效
  3. 列合并 :使用concat_ws将多个字符串列的值合并为单个字符串
  4. 字符拆分:通过split+explode将字符串拆分为单个字符,并过滤空字符
  5. 非法字符过滤:使用RDD操作过滤不在白名单中的字符,并通过distinct去重
  6. 结果处理:使用有序集合保持字符首次出现的顺序(注意:分布式环境下无法保证绝对顺序)

注意事项:

  • 最终结果字符顺序可能与实际数据中的出现顺序不完全一致
  • 白名单包含94个可打印ASCII字符(排除空格和控制字符)
  • 使用RDD操作提升分布式处理性能
  • 最终结果字符串可能包含各类特殊符号、中文、表情符号等非标准ASCII字符
相关推荐
喵手12 分钟前
Python爬虫零基础入门【第二章:网页基础·第1节】网页是怎么工作的:URL、请求、响应、状态码?
爬虫·python·python爬虫实战·python爬虫工程化实战·python爬虫零基础入门·网页基础
忧郁的橙子.44 分钟前
26期_01_Pyhton判断语句
python
快乐小胡!1 小时前
【自动化测试】Selenium选择/定位元素的基本方法
python·selenium·测试工具
一只专注api接口开发的技术猿1 小时前
微服务架构下集成淘宝商品 API 的实践与思考
java·大数据·开发语言·数据库·微服务·架构
高洁011 小时前
数字孪生与数字样机的技术基础:建模与仿真
python·算法·机器学习·transformer·知识图谱
喵手1 小时前
Python爬虫零基础入门【第二章:网页基础·第4节】新手最常栽的坑:编码、时区、空值、脏数据!
爬虫·python·python爬虫实战·python爬虫工程化实战·python爬虫零基础入门·python爬虫编码时区·爬虫编码时区
AC赳赳老秦1 小时前
Dify工作流+DeepSeek:运维自动化闭环(数据采集→报告生成)
android·大数据·运维·数据库·人工智能·golang·deepseek
明洞日记1 小时前
【软考每日一练009】计算机系统性能评价:基准程序分类与 TPC 实战案例详解
大数据·数据库
李慕婉学姐1 小时前
【开题答辩过程】以《基于Spring Boot和大数据的医院挂号系统的设计与实现》为例,不知道这个选题怎么做的,不知道这个选题怎么开题答辩的可以进来看看
大数据·spring boot·后端
汽车仪器仪表相关领域2 小时前
全程高温伴热,NOx瞬态精准捕捉:MEXA-1170HCLD加热型NOx测定装置项目实战全解
大数据·服务器·网络·人工智能·功能测试·单元测试·可用性测试