PySpark获取Dataframe中所有非ASCII字符

python 复制代码
from pyspark.sql import SparkSession
from pyspark.sql.functions import col, concat_ws, explode, split, coalesce, lit
from pyspark.sql.types import StringType

spark = SparkSession.builder.appName("InvalidCharacterFinder").getOrCreate()

# 假设已存在DataFrame df
# df = ...

# 获取所有字符串类型列名
string_columns = [f.name for f in df.schema.fields if isinstance(f.dataType, StringType)]
result = []

if string_columns:
    # 处理空值并合并字符串列
    non_null_cols = [coalesce(col(c), lit("")).alias(c) for c in string_columns]
    combined_df = df.select(non_null_cols).select(concat_ws("", *string_columns).alias("merged_str"))
    
    # 拆分字符并过滤空字符串
    chars_df = combined_df.withColumn("char", explode(split(col("merged_str"), "")))\
                          .filter(col("char") != "")
    
    # 定义合法字符集合
    allowed_chars = set('abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789!'
                        '"#$%&\'()*+,-./:;<=>?@[]^_`{|}~')
    
    # 收集非法字符并去重
    unique_invalid = chars_df.rdd.map(lambda x: x.char)\
                             .filter(lambda c: c not in allowed_chars)\
                             .distinct()\
                             .collect()
    
    # 按首次出现顺序保留字符(分布式环境无法保证绝对顺序)
    seen = set()
    ordered_result = []
    for char in unique_invalid:
        if char not in seen:
            ordered_result.append(char)
            seen.add(char)
    result = ordered_result

print("非法字符集合:", ''.join(result))

代码说明:

  1. 数据准备:通过DataFrame Schema识别所有字符串类型的列
  2. 空值处理 :使用coalesce函数将NULL转换为空字符串,确保后续字符串合并有效
  3. 列合并 :使用concat_ws将多个字符串列的值合并为单个字符串
  4. 字符拆分:通过split+explode将字符串拆分为单个字符,并过滤空字符
  5. 非法字符过滤:使用RDD操作过滤不在白名单中的字符,并通过distinct去重
  6. 结果处理:使用有序集合保持字符首次出现的顺序(注意:分布式环境下无法保证绝对顺序)

注意事项:

  • 最终结果字符顺序可能与实际数据中的出现顺序不完全一致
  • 白名单包含94个可打印ASCII字符(排除空格和控制字符)
  • 使用RDD操作提升分布式处理性能
  • 最终结果字符串可能包含各类特殊符号、中文、表情符号等非标准ASCII字符
相关推荐
闻哥5 分钟前
Java虚拟机内存结构深度解析:从底层原理到实战调优
java·开发语言·jvm·python·面试·springboot
@––––––19 分钟前
力扣hot100—系列6-栈
linux·python·leetcode
Jia ming21 分钟前
《智能法官软件项目》—数据可视化模块
python·信息可视化·教学·案例·智能法官软件
志栋智能37 分钟前
智能巡检自动化解决方案:从“人海战术”到“AI智巡”的效能革命
大数据·运维·人工智能·网络安全·云原生·自动化
Web极客码39 分钟前
CentOS 7 删除文件却不释放空间?从 inode、文件描述符到 VFS 的底层原理解析
python·centos·numpy
志栋智能40 分钟前
AI驱动的带内自动化巡检:编织IT生态的“智慧神经网络”
大数据·运维·网络·人工智能·神经网络·自动化
能源系统预测和优化研究42 分钟前
【原创改进代码】考虑电动汽车移动储能特性的多区域电网功率波动平抑优化调控
大数据·算法·能源
加速财经42 分钟前
WEEX BUILDERS阿姆斯特丹站落幕:真实市场环境下的AI 量化实践探索
大数据·人工智能
火红色祥云1 小时前
Python机器学习经典实例_笔记
笔记·python·机器学习
一苓二肆1 小时前
Git 常用指令总结(工程实战版)
大数据·git·elasticsearch