5.【线性代数】—— 转置,置换和向量空间

五 转置,置换和向量空间

    • [1. 置换矩阵](#1. 置换矩阵)
    • [2. 转置矩阵](#2. 转置矩阵)
    • [3. 对称矩阵](#3. 对称矩阵)
    • [4. 向量空间](#4. 向量空间)
        • [4.1 向量空间](#4.1 向量空间)
        • [4.2 子空间](#4.2 子空间)

1. 置换矩阵

定义: 用于行互换的矩阵P。

之前进行A=LU分解时,可能存在该行主元为0,要进行行互换,即PA=LU

性质: P − 1 = P T P^{-1} = P^{T} P−1=PT, P T P = I P^{T}P=I PTP=I

例子:

1 0 0 0 1 0 0 0 1 \] \[ 0 1 0 1 0 0 0 0 1 \] . . . \\begin{bmatrix} 1\&0\&0\\\\ 0\&1\&0\\\\ 0\&0\&1 \\end{bmatrix} \\begin{bmatrix} 0\&1\&0\\\\ 1\&0\&0\\\\ 0\&0\&1 \\end{bmatrix} ... 100010001 010100001 ... ### 2. 转置矩阵 \[ 1 3 2 3 4 1 \] T = \[ 1 2 4 3 3 1 \] {\\begin{bmatrix} 1\&3\\\\ 2\&3\\\\ 4\&1 \\end{bmatrix}}\^{T} = \\begin{bmatrix} 1\&2\&4\\\\ 3\&3\&1 \\end{bmatrix} 124331 T=\[132341

( A T ) i j = A j i (A^T){ij} = A{ji} (AT)ij=Aji

3. 对称矩阵

定义: A i j = A j i A_{ij} = A_{ji} Aij=Aji

性质: 对称矩阵的转置不变性 A T = A A^T = A AT=A

推论: R T R R^TR RTR都是对称矩阵
( R T R ) T = R T ( R T ) T = R T R (R^TR)^T = R^T(R^T)^T = R^TR (RTR)T=RT(RT)T=RTR

4. 向量空间

4.1 向量空间

记 R 2 R^2 R2为所有二维空间实数向量,组成的向量空间。
R n R^n Rn为所有n维空间实数向量,组成的向量空间。

性质:

  1. 所有数乘,加法都在子空间中
  2. 包含零向量
4.2 子空间

定义:空间中的一部分,且满足性质1和性质2。

例子:
R 2 R^2 R2的子空间包含

  1. R^2 二维平面
  2. 通过(0,0)点的直线
  3. 零向量

其他:存在子空间P和L, P ∪ L P\cup L P∪L不是子空间, P ∩ L P \cap L P∩L是子空间

相关推荐
A尘埃1 天前
线性代数(标量与向量+矩阵与张量+矩阵求导)
python·线性代数·矩阵
WaWaJie_Ngen2 天前
LevOJ P2080 炼金铺 II [矩阵解法]
c++·线性代数·算法·矩阵
天天向上的鹿茸2 天前
用矩阵实现元素绕不定点旋转
前端·线性代数·矩阵
一又四分之一.3 天前
线代一轮复习
线性代数
西猫雷婶3 天前
pytorch基本运算-torch.normal()函数生成的随机数据添加噪声
人工智能·pytorch·python·深度学习·学习·线性代数·机器学习
qq_429879674 天前
如何判断模型矩阵是否做了镜像
线性代数·矩阵
dengzhenyue4 天前
矩阵结构体 图片绘制 超级玛丽demo6
线性代数·矩阵
lovod4 天前
【视觉SLAM十四讲】视觉里程计 1
人工智能·线性代数·计算机视觉·矩阵·机器人
MoRanzhi12036 天前
基于 SciPy 的矩阵运算与线性代数应用详解
人工智能·python·线性代数·算法·数学建模·矩阵·scipy
MoRanzhi12037 天前
9. NumPy 线性代数:矩阵运算与科学计算基础
人工智能·python·线性代数·算法·机器学习·矩阵·numpy