5.【线性代数】—— 转置,置换和向量空间

五 转置,置换和向量空间

    • [1. 置换矩阵](#1. 置换矩阵)
    • [2. 转置矩阵](#2. 转置矩阵)
    • [3. 对称矩阵](#3. 对称矩阵)
    • [4. 向量空间](#4. 向量空间)
        • [4.1 向量空间](#4.1 向量空间)
        • [4.2 子空间](#4.2 子空间)

1. 置换矩阵

定义: 用于行互换的矩阵P。

之前进行A=LU分解时,可能存在该行主元为0,要进行行互换,即PA=LU

性质: P − 1 = P T P^{-1} = P^{T} P−1=PT, P T P = I P^{T}P=I PTP=I

例子:
[ 1 0 0 0 1 0 0 0 1 ] [ 0 1 0 1 0 0 0 0 1 ] . . . \begin{bmatrix} 1&0&0\\ 0&1&0\\ 0&0&1 \end{bmatrix} \begin{bmatrix} 0&1&0\\ 1&0&0\\ 0&0&1 \end{bmatrix} ... 100010001 010100001 ...

2. 转置矩阵

[ 1 3 2 3 4 1 ] T = [ 1 2 4 3 3 1 ] {\begin{bmatrix} 1&3\\ 2&3\\ 4&1 \end{bmatrix}}^{T} = \begin{bmatrix} 1&2&4\\ 3&3&1 \end{bmatrix} 124331 T=[132341]
( A T ) i j = A j i (A^T){ij} = A{ji} (AT)ij=Aji

3. 对称矩阵

定义: A i j = A j i A_{ij} = A_{ji} Aij=Aji

性质: 对称矩阵的转置不变性 A T = A A^T = A AT=A

推论: R T R R^TR RTR都是对称矩阵
( R T R ) T = R T ( R T ) T = R T R (R^TR)^T = R^T(R^T)^T = R^TR (RTR)T=RT(RT)T=RTR

4. 向量空间

4.1 向量空间

记 R 2 R^2 R2为所有二维空间实数向量,组成的向量空间。
R n R^n Rn为所有n维空间实数向量,组成的向量空间。

性质:

  1. 所有数乘,加法都在子空间中
  2. 包含零向量
4.2 子空间

定义:空间中的一部分,且满足性质1和性质2。

例子:
R 2 R^2 R2的子空间包含

  1. R^2 二维平面
  2. 通过(0,0)点的直线
  3. 零向量

其他:存在子空间P和L, P ∪ L P\cup L P∪L不是子空间, P ∩ L P \cap L P∩L是子空间

相关推荐
亲持红叶8 小时前
最优化方法-牛顿法
人工智能·线性代数·机器学习·概率论
sda423423424231 天前
8.【线性代数】——求解Ax=b
线性代数·ax=b
余~~185381628001 天前
短视频矩阵碰一碰发视频源码技术开发,支持OEM
网络·人工智能·线性代数·矩阵·音视频
运筹说1 天前
运筹说 第132期 | 矩阵对策的基本理论
线性代数·矩阵·运筹学
sda423423424232 天前
6.【线性代数】—— 列空间和零空间
线性代数·列空间·零空间
sda423423424232 天前
7.【线性代数】——求解Ax=0,主列和自由列
线性代数·ax=0
sda423423424233 天前
4.【线性代数】——矩阵的LU分解
线性代数·矩阵·矩阵分解·lu
aaasssdddd963 天前
鸡兔同笼问题
c语言·线性代数·算法·矩阵·解释器
余:185381628003 天前
矩阵系统源码搭建之多种剪辑功能技术开发,支持OEM
线性代数·矩阵