8. Flink-CDC

Flink-cdc主要是用来同步数据库中的数据,它的主要优势在于基于Flink框架直接用Flink Stream Api 或Flink SQL 直接编程,不需要引入第三方组件

Flink-cdc在使用上需要注意的点

  • 注意Flink-cdc在2.1版本之前需要导入MySQL的连接包,之后版本不需要,如果环境中有MySQL的连接包需要去除掉
  • 在2.4版本之监控MySQL表需要它有主键,2.4版本开始只需要配置"scan.incremental.snapshot.chunk.key-column"参数即可
  • MySQL CDC Connector在监控多个表的时候,每个表需要指定库名,并用逗号隔开
  • Flink中必须要设置checkpoint,不设置无法正常监控binlog变更日志
    Flink-CDC基于DataStream的使用
java 复制代码
MySqlSource<String> mySqlSource = MySqlSource.<String>builder()
        .hostname("node2")      //设置MySQL hostname
        .port(3306)             //设置MySQL port
        .databaseList("db1")    //设置捕获的数据库
        .tableList("db1.tbl1,db1.tbl2") //设置捕获的数据表
        .username("root")       //设置登录MySQL用户名
        .password("123456")     //设置登录MySQL密码
        .deserializer(new JsonDebeziumDeserializationSchema()) //设置序列化将SourceRecord 转换成 Json 字符串
        .startupOptions(StartupOptions.initial())
        .build();
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
//开启checkpoint
env.enableCheckpointing(5000);
env.fromSource(mySqlSource, WatermarkStrategy.noWatermarks(),"MySQL Source")
        .setParallelism(4)
        .print();
env.execute();

基于Flink Sql的使用

java 复制代码
EnvironmentSettings settings = EnvironmentSettings.newInstance().inStreamingMode().build();
TableEnvironment tableEnv = TableEnvironment.create(settings);
//设置checkpoint
tableEnv.getConfig().getConfiguration().setLong("execution.checkpointing.interval", 5000L);
tableEnv.executeSql("" +
        "CREATE TABLE mysql_binlog (" +
        " id INT," +
        " name STRING," +
        " age INT," +
        " PRIMARY KEY(id) NOT ENFORCED" +
        ") WITH (" +
        " 'connector' = 'mysql-cdc'," +
        " 'hostname' = 'node2'," +
        " 'port' = '3306'," +
        " 'username' = 'root'," +
        " 'password' = '123456'," +
        " 'database-name' = 'db1'," +
        " 'table-name' = 'tbl1'" +
        ")");
tableEnv.executeSql("select * from mysql_binlog").print();

并行读取表的全量快照,然后以单并行度方式读取表的binlog进行增量数据的同步

  • 全量同步过程中,它会根据主键把数据分为多个chunk分片,然后分配给多并行度去分别读取这些chunk上的数据,读取快照期间,Flink支持chunk级别的checkpoint,即使在同步的过程中发生故障,也可以做到exactly-once级别的恢复

启动模式是指程序启动的时候,以怎么的方式监控数据库中的数据,共有如下几种模式

  • initial(默认): 对受监控的库表进行初始快照,并继续读取最新的binlog
  • earliest-offset: 它会跳过快照直接读取最早的binlog日志,它与initial方式区别在于,initial只读取已经操作后(表中现有数据)的数据
  • latest-offset: 不执行快照,从binlog的最新处开始读取增量数据
  • specific-offset: 从指定的binlog位点开始读取,位点可以通过binlog文件名和位置指定
  • timestamp: 从指定的时间戳读取binlog事件
相关推荐
Edingbrugh.南空14 小时前
Flink ClickHouse 连接器维表源码深度解析
java·clickhouse·flink
诗旸的技术记录与分享1 天前
Flink-1.19.0源码详解-番外补充3-StreamGraph图
大数据·flink
Edingbrugh.南空1 天前
Flink MySQL CDC 环境配置与验证
mysql·adb·flink
bxlj_jcj2 天前
深入Flink核心概念:解锁大数据流处理的奥秘
大数据·flink
Edingbrugh.南空2 天前
Flink SQLServer CDC 环境配置与验证
数据库·sqlserver·flink
Edingbrugh.南空2 天前
Flink OceanBase CDC 环境配置与验证
大数据·flink·oceanbase
Edingbrugh.南空3 天前
Flink TiDB CDC 环境配置与验证
大数据·flink·tidb
Edingbrugh.南空3 天前
Flink Postgres CDC 环境配置与验证
大数据·flink
lifallen3 天前
Paimon vs. HBase:全链路开销对比
java·大数据·数据结构·数据库·算法·flink·hbase
expect7g13 天前
新时代多流Join的一个思路----Partial Update
后端·flink