9.【线性代数】—— 线性相关性, 向量空间的基,维数

九 线性相关性, 向量空间的基,维数

    • [Ax=0 什么情况下无解(x不为零向量)](#Ax=0 什么情况下无解(x不为零向量))
    • [1. 向量组的线性无关性](#1. 向量组的线性无关性)
    • 2.向量组生成一个空间(S)
    • [3. 向量空间的一组基:都满足向量个数相同](#3. 向量空间的一组基:都满足向量个数相同)
    • [4. 空间维数 = 基向量的个数](#4. 空间维数 = 基向量的个数)

Ax=0 什么情况下无解(x不为零向量)

Ax=0无解,当且仅当,A矩阵通过消元后,转化为单位矩阵,没有自由变量。

A 的矩阵大小为 m ∗ n ,当 m < n , 可以转换为 R 矩阵, A x = 0 有解,因为存在自由变量。秩最多为 m ,自由变量为 n − m A的矩阵大小为 m*n,当 m<n,可以转换为R矩阵,Ax=0有解,因为存在自由变量。秩最多为m,自由变量为 n-m A的矩阵大小为m∗n,当m<n,可以转换为R矩阵,Ax=0有解,因为存在自由变量。秩最多为m,自由变量为n−m

1. 向量组的线性无关性

记: 有一组向量, x 1 , x 2 , x 3 . . . x n ,当不存在 c 1 x 1 + c 2 x 2 + . . . + c n x n ≠ 0 时,则称 x 1 , x 2 , x 3 . . . x n 是线性无关的。 有一组向量,x_1,x_2,x_3...x_n,当不存在 c_1x1+c_2x_2+...+c_nx_n\neq0时,则称x_1,x_2,x_3...x_n是线性无关的。 有一组向量,x1,x2,x3...xn,当不存在c1x1+c2x2+...+cnxn=0时,则称x1,x2,x3...xn是线性无关的。

如果 v 1 , v 2 . . . v n 是矩阵 A 的列向量,如果向量组线性无关,那么 A x = 0 无解, A 的秩为 n 。 如果v_1,v_2...v_n是矩阵A的列向量,如果向量组线性无关,那么Ax=0无解,A的秩为n。 如果v1,v2...vn是矩阵A的列向量,如果向量组线性无关,那么Ax=0无解,A的秩为n。

2.向量组生成一个空间(S)

等价于 空间包含向量组的线性组合 空间包含向量组的线性组合 空间包含向量组的线性组合

3. 向量空间的一组基:都满足向量个数相同

那么 向量组有两个性质, 1. 线性无关 2. 生成一整个空间 向量组有两个性质,1. 线性无关 2. 生成一整个空间 向量组有两个性质,1.线性无关2.生成一整个空间

R 3 R^3 R3的一组基

1 0 0 \] , \[ 0 1 0 \] , \[ 0 0 1 \] \\begin{bmatrix} 1\\\\0\\\\0 \\end{bmatrix}, \\begin{bmatrix} 0\\\\1\\\\0 \\end{bmatrix}, \\begin{bmatrix} 0\\\\0\\\\1 \\end{bmatrix} 100 , 010 , 001 当 A n ∗ n A_{n\*n} An∗n可逆 ⇒ \\xRightarrow{} 满秩 ⇒ \\xRightarrow{} n个向量是 R n R\^n Rn的基 ### 4. 空间维数 = 基向量的个数 例子 A = \[ 1 2 3 1 1 1 2 1 1 2 3 1 \] A = \\begin{bmatrix} 1\&2\&3\&1\\\\ 1\&1\&2\&1\\\\ 1\&2\&3\&1\\\\ \\end{bmatrix} A= 111212323111 A的基为 \[ 1 2 1 1 1 2 \] \\begin{bmatrix} 1\&2\\\\ 1\&1\\\\ 1\&2\\\\ \\end{bmatrix} 111212 N ( A ) = c \[ − 1 − 1 1 0 \] + d \[ − 1 0 0 1 \] N(A) = c\\begin{bmatrix} -1\\\\-1\\\\1\\\\0 \\end{bmatrix} + d\\begin{bmatrix} -1\\\\ 0\\\\ 0\\\\ 1 \\end{bmatrix} N(A)=c −1−110 +d −1001 ,求法详见[7.【线性代数】------求解Ax=0,主列和自由列](https://blog.csdn.net/sda42342342423/article/details/145705296) > r a n k ( A ) = 主列数 = 空间的维数 C ( A ) = r rank(A) = 主列数 = 空间的维数 C(A) = r rank(A)=主列数=空间的维数C(A)=r > d i m ( N ( A ) ) = 自由列的列数 = n − r dim(N(A)) = 自由列的列数 = n - r dim(N(A))=自由列的列数=n−r

相关推荐
峙峙峙2 天前
线性代数--AI数学基础复习
人工智能·线性代数
CVer儿2 天前
svd分解求旋转平移矩阵
线性代数·算法·矩阵
张晓~183399481212 天前
数字人分身+矩阵系统聚合+碰一碰发视频: 源码搭建-支持OEM
线性代数·矩阵·音视频
山登绝顶我为峰 3(^v^)32 天前
如何录制带备注的演示文稿(LaTex Beamer + Pympress)
c++·线性代数·算法·计算机·密码学·音视频·latex
微小冷2 天前
二关节机器人系统模型推导
线性代数·机器人·概率论·推导·拉格朗日函数·二关节机器人·机器人控制系统的设计
luofeiju3 天前
使用LU分解求解线性方程组
线性代数·算法
FF-Studio4 天前
【硬核数学 · LLM篇】3.1 Transformer之心:自注意力机制的线性代数解构《从零构建机器学习、深度学习到LLM的数学认知》
人工智能·pytorch·深度学习·线性代数·机器学习·数学建模·transformer
盛寒5 天前
矩阵的定义和运算 线性代数
线性代数
盛寒5 天前
初等变换 线性代数
线性代数
叶子爱分享5 天前
浅谈「线性代数的本质」 - 系列合集
线性代数