S2GAE论文阅读

CCFB类,2023年的论文,与MaskGAE的一些创新点很像

感觉里面的有些句子没解释清楚,而且也没引用,看的一头雾水,我觉得这篇论文最创新的就是从损失函数公式的角度把对比学习与生成学习统一起来了,而且模型的性能提升也不算很高,某一领域不突出,但所有应用场景表现很平均的好("中庸之道"),在大规模图上表少的也不错

S2GAE

现有问题

主要与GAE和MaskGAE进行比较,分析了这两个模型的不足

  • GAE和MaskGAE都过于强调临近信息,全局学到的很少
  • GAE的泛化能力不行(主要在链接预测上表现好)
  • MaskGAE不适用于大规模图,而且由于输入图包含噪音,其decoder表现力不好

创新点

  • 提出了有向边掩码(Masked也有)
  • 交叉熵关联解码(看流程图可以看出来怎么做的)更能学习到信息的表示
  • 从loss函数方面把对比学习与生成学习统一起来
    • 都计算了两个节点间的相似度
    • 对比学习用了两种增强策略得到了两个节点的增强视图进行比较,生成学习相当于用一种增强策略及掩码得到了两个节点的增强视图
    • 把某条边相连的两个顶点的局部子图作为两个子图进行对比

可以用到的小点

  • 在做实验的时候由于GraphMAE没有进行链接预测实验,可以自己训练一个MLP的decoder进行微调
  • 在进行节点分类,图分类的时候只用到了encoder,但是在连接预测任务中预训练的decoder也被用来进行预测两个节点之间是否存在边(这样Bandana提出的decoder会扰乱评估过程就说的通了)
  • 在计算loss时,分母不是计算了所有节点的,而是用了负采样
  • 而且在消融实验中,MLP换成GNN效果反而不好,好神奇,我觉得是和他上一步的交叉相乘有关系
  • 把所有层的嵌入拼接到一起也不好(但是MaskGAE就是拼接到一起了,效果挺好)
相关推荐
0x21114 分钟前
[论文阅读]Tensor Trust: Interpretable Prompt Injection Attacks from an Online Game
论文阅读·prompt
s1ckrain1 天前
【论文阅读】VARGPT-v1.1
论文阅读·多模态大模型·统一生成模型
Catching Star1 天前
【论文笔记】【强化微调】Vision-R1:首个针对多模态 LLM 制定的强化微调方法,以 7B 比肩 70B
论文阅读·强化微调
王上上1 天前
【论文阅读41】-LSTM-PINN预测人口
论文阅读·人工智能·lstm
s1ckrain2 天前
【论文阅读】DeepEyes: Incentivizing “Thinking with Images” via Reinforcement Learning
论文阅读·强化学习·多模态大模型·vlm
张较瘦_2 天前
[论文阅读] 人工智能 + 软件工程 | 需求获取访谈中LLM生成跟进问题研究:来龙去脉与创新突破
论文阅读·人工智能
北京地铁1号线3 天前
GPT-2论文阅读:Language Models are Unsupervised Multitask Learners
论文阅读·gpt·语言模型
张较瘦_3 天前
[论文阅读] 人工智能 + 软件工程 | 软件架构中自然问题主动辅助研究:从挑战到解决方案
论文阅读·人工智能·软件工程
有Li4 天前
通过具有一致性嵌入的大语言模型实现端到端乳腺癌放射治疗计划制定|文献速递-最新论文分享
论文阅读·深度学习·分类·医学生
张较瘦_4 天前
[论文阅读] 人工智能 | 深度学习系统崩溃恢复新方案:DaiFu框架的原位修复技术
论文阅读·人工智能·深度学习