挖src实用脚本开发(二)

文章目录

这篇文章记录cms识别脚本。

技术原理

1.使用在线平台识别,比如whatcms,fofa等

2.自己写脚本识别,但是指纹库麻烦,需要耗费大量精力

代码实现一

这里我使用的是whatcms接口,可以免费每个月使用1000次。需要自己申请key。也可以用别的接口。

python 复制代码
from prettytable import PrettyTable

from config import apikey_cms
import requests

def cms(domain):
    if apikey_cms=="None":
        print("no apikey for whatcms")
        return None
    api_url = f"https://whatcms.org/API/Tech?key={apikey_cms}&url={domain}"
    response = requests.get(api_url)
    # print(response.text)
    # 检查响应状态码是否为 200 (OK)
    if response.status_code == 200:
        data = response.json()
        if data['results'] != []:
            tech_table = PrettyTable()
            tech_table.field_names = ["技术名称", "版本", "类别", "更多信息"]
            # 提取技术栈数据并添加到表格中
            for tech in data['results']:
                tech_table.add_row([
                    tech['name'],
                    tech['version'] if tech['version'] else 'N/A',
                    ', '.join(tech['categories']),
                    f"https:{tech['url']}"  # 拼接完整的 URL
                ])
            # 打印技术栈表格
            print("技术栈信息:")
            print(tech_table)
        else:
            print("未识别到cms信息")
        if data['meta'] != []:
            # 创建 PrettyTable 对象来存储社交媒体数据
            social_table = PrettyTable()
            # 设置列名
            social_table.field_names = ["社交网络", "URL", "个人资料"]
            # 提取社交媒体数据并添加到表格中
            for social in data['meta']['social']:
                social_table.add_row([
                    social['network'],
                    social['url'],
                    social['profile']
                ])
            # 打印社交媒体表格
            print("\n社交媒体信息:")
            print(social_table)
        else:
            print("未识别到社交信息")
    else:
        print(f"请求失败,状态码:{response.status_code}")

if __name__ == '__main__':
    cms("http://eci-2zea2431utbdaijiw30l.cloudeci1.ichunqiu.com/")

这里我采用一道靶场为例:

代码实现二

自己使用指纹库识别,收集特征文件的md5值,然后访问文件比对md5值。

python 复制代码
def cms_cms(url):
    cms_json = open("../fingers/cms/fingers_simple.json", "r", encoding="utf-8")
    cms_data = json.load(cms_json)
    for i in cms_data["data"]:
        print(i)
        if i["path"]!="":
            respon = requests.get(url+i["path"])
            if str(respon) == "<Response [200]>":
                md5_1 = hashlib.md5()
                md5_1.update(respon.content)
                hash_key = md5_1.hexdigest()
                if hash_key ==i["match_pattern"]:
                    print(i["cms"])
                    return i["cms"]

指纹库如下这种(自己在网上收集):

xml 复制代码
{
    "data": [
        {
            "cms": "\u4e94\u6307cms\u7f51\u7ad9\u7ba1\u7406\u7cfb\u7edf",
            "file_type": "css",
            "type": "md5",
            "match_pattern": "5fed1213ff84fad23770feb545d0bb18",
            "path": "/res/member/css/member.css",
            "uptime": "2020-07-20 15:22"
        },
        {
            "cms": "\u4e94\u6307cms\u7f51\u7ad9\u7ba1\u7406\u7cfb\u7edf",
            "file_type": "css",
            "type": "md5",
            "match_pattern": "5d5357cb3704e1f43a1f5bfed2aebf42",
            "path": "/res/member/css/bootstrap.min.css",
            "uptime": "2020-07-20 15:22"
        },
        {
            "cms": "\u4e94\u6307cms\u7f51\u7ad9\u7ba1\u7406\u7cfb\u7edf",
            "file_type": "css",
            "type": "md5",
            "match_pattern": "f392e44a01b4e725a0721c791b628107",
            "path": "/res/member/css/login.css",
            "uptime": "2020-07-20 15:22"
        },
}        

总结

对于cms识别如果自己没有大量时间建议使用在线cms识别。

浏览器插件: wappalyzer

whatcms

云悉

fofa,360quake等

指纹库:

自己去github上面找,然后自己针对经常遇到的cms进行收集,制作自己的指纹库。

相关推荐
知乎的哥廷根数学学派6 小时前
面向可信机械故障诊断的自适应置信度惩罚深度校准算法(Pytorch)
人工智能·pytorch·python·深度学习·算法·机器学习·矩阵
且去填词6 小时前
DeepSeek :基于 Schema 推理与自愈机制的智能 ETL
数据仓库·人工智能·python·语言模型·etl·schema·deepseek
人工干智能6 小时前
OpenAI Assistants API 中 client.beta.threads.messages.create方法,兼谈一星*和两星**解包
python·llm
databook6 小时前
当条形图遇上极坐标:径向与圆形条形图的视觉革命
python·数据分析·数据可视化
阿部多瑞 ABU7 小时前
`chenmo` —— 可编程元叙事引擎 V2.3+
linux·人工智能·python·ai写作
acanab7 小时前
VScode python插件
ide·vscode·python
知乎的哥廷根数学学派7 小时前
基于生成对抗U-Net混合架构的隧道衬砌缺陷地质雷达数据智能反演与成像方法(以模拟信号为例,Pytorch)
开发语言·人工智能·pytorch·python·深度学习·机器学习
WangYaolove13148 小时前
Python基于大数据的电影市场预测分析(源码+文档)
python·django·毕业设计·源码
知乎的哥廷根数学学派8 小时前
基于自适应多尺度小波核编码与注意力增强的脉冲神经网络机械故障诊断(Pytorch)
人工智能·pytorch·python·深度学习·神经网络·机器学习
cnxy1889 小时前
Python爬虫进阶:反爬虫策略与Selenium自动化完整指南
爬虫·python·selenium