【免费】YOLO[笑容]目标检测全过程(yolo环境配置+labelimg数据集标注+目标检测训练测试)

一、yolo环境配置

这篇帖子是我试过的,非常全,很详细【cuda+anaconda+pytorch+yolo(ultralytics)】

yolo环境配置

二、labelimg数据集标注

可以参考下面的帖子,不过可能会出现闪退的问题,安装我的流程来吧

2.1 labelimg安装

label闪退最大的可能是python的版本过高,【'win'+R】后输入【cmd】或者打开 anaconda的Anaconda Prompt,在后台输入指令:

或者

python 复制代码
conda create --name labelimg python=3.8

进入labelimg环境:

python 复制代码
conda activate labelimg

安装labelimg

python 复制代码
pip install labelimg -i https://pypi.tuna.tsinghua.edu.cn/simple

打开labelimg

python 复制代码
labelimg

2.2 labelimg使用

labelimg使用方法

三、yolo目标检测训练测试

3.1数据集处理

根据网盘下载文件(可以运行),解压后以pycharm的方式打开

提取码:JptC

标注后的数据集以下面图片的方式整理(文件包中已经全部整理完毕):

3.2目标检测训练

在ultralytics\ultralytics\cfg\datasets中新建一个数据加载文件a-data-myself.yaml【注意改成自己的绝对路径】:

编写代码后保存,代码内容如下:

python 复制代码
path: C:/Users/34866/OneDrive/Desktop/ultralytics/yolo-smile#自己的本地绝对路径
train: # train images (relative to 'path')  16551 images
  - images/train
val: # val images (relative to 'path')  4952 images
  - images/val
test: # test images (optional)
  - images/test

# Classes
names:
  0: smile#标签类型

新建一个训练文件train.py,编写后运行注意改成自己的绝对路径】,代码内容如下:

python 复制代码
import time
from ultralytics import YOLO


# yolo11模型训练:训练模型的数据为'a-data-myself.yaml',轮数为100,图片大小为640,设备为本地的GPU显卡,关闭多线程的加载,图像加载的批次大小为4,开启图片缓存
model = YOLO(r'C:/Users/34866/OneDrive/Desktop/ultralytics/pre-models/yolov8l.pt')  # load a pretrained model (recommended for training)
# results = model.train(data='A_my_data.yaml', epochs=100, imgsz=640, device=[0,], workers=0, batch=4, cache=True)  # GPU开始训练
# todo A_my_data.yaml请切换为你本地的绝对路径,如果是本地的绝对路径,请填写绝对路径
results = model.train(data=r'C:/Users/34866/OneDrive/Desktop/ultralytics/ultralytics/cfg/datasets/a-data-myself.yaml',
                      epochs=100, imgsz=640, device=[], workers=0, batch=2, cache=True, amp=False)  # 开始训练
time.sleep(10) # 睡眠10s,主要是用于服务器多次训练的过程中使用

运行结果如下:

运行后在ultralytics\run\runs\detect生成训练过程与结果:

3.3测试训练结果

新建一个检测文件single_detect.py,编写后运行注意改成自己的绝对路径】,代码内容如下:

python 复制代码
from ultralytics import YOLO

# Load a model
model = YOLO(r'C:\Users\34866\OneDrive\Desktop\ultralytics\run\runs\detect\train\weights\best.pt')  # pretrained YOLOv8n model

# Run batched inference on a list of images
results = model(["C:/Users/34866/OneDrive/Desktop/ultralytics/test.jpg"], conf=0.25, iou=0.95)  # return a list of Results objects

# Process results list
for result in results:
    boxes = result.boxes  # Boxes object for bounding box outputs
    masks = result.masks  # Masks object for segmentation masks outputs
    keypoints = result.keypoints  # Keypoints object for pose outputs
    probs = result.probs  # Probs object for classification outputs
    obb = result.obb  # Oriented boxes object for OBB outputs
    result.show()  # display to screen
    result.save(filename="images/resources/result.jpg")  # save to disk

下面是一些测试结果:【图片侵权联系删除】

相关推荐
格林威2 小时前
机器视觉检测的光源基础知识及光源选型
人工智能·深度学习·数码相机·yolo·计算机视觉·视觉检测
shao91851611 小时前
Gradio全解11——Streaming:流式传输的视频应用(3)——YOLO系列模型技术架构与实战
yolo·coco·yolov10·yoloe
Francek Chen15 小时前
【深度学习计算机视觉】03:目标检测和边界框
人工智能·pytorch·深度学习·目标检测·计算机视觉·边界框
JoinApper1 天前
目标检测系列-Yolov5下载及运行
人工智能·yolo·目标检测
一碗白开水一2 天前
【论文阅读】Far3D: Expanding the Horizon for Surround-view 3D Object Detection
论文阅读·人工智能·深度学习·算法·目标检测·计算机视觉·3d
XiaoMu_0012 天前
基于Django+Vue3+YOLO的智能气象检测系统
python·yolo·django
程序员柳2 天前
基于YOLOv8的车辆轨迹识别与目标检测研究分析软件源代码+详细文档
人工智能·yolo·目标检测
小胖墩有点瘦2 天前
【基于yolo和web的垃圾分类系统】
人工智能·python·yolo·flask·毕业设计·课程设计·垃圾分类
格林威3 天前
棱镜的技术加持:线扫相机如何同时拍RGB和SWIR?
人工智能·深度学习·数码相机·yolo·计算机视觉
大学生毕业题目3 天前
毕业项目推荐:83-基于yolov8/yolov5/yolo11的农作物杂草检测识别系统(Python+卷积神经网络)
人工智能·python·yolo·目标检测·cnn·pyqt·杂草识别