【免费】YOLO[笑容]目标检测全过程(yolo环境配置+labelimg数据集标注+目标检测训练测试)

一、yolo环境配置

这篇帖子是我试过的,非常全,很详细【cuda+anaconda+pytorch+yolo(ultralytics)】

yolo环境配置

二、labelimg数据集标注

可以参考下面的帖子,不过可能会出现闪退的问题,安装我的流程来吧

2.1 labelimg安装

label闪退最大的可能是python的版本过高,【'win'+R】后输入【cmd】或者打开 anaconda的Anaconda Prompt,在后台输入指令:

或者

python 复制代码
conda create --name labelimg python=3.8

进入labelimg环境:

python 复制代码
conda activate labelimg

安装labelimg

python 复制代码
pip install labelimg -i https://pypi.tuna.tsinghua.edu.cn/simple

打开labelimg

python 复制代码
labelimg

2.2 labelimg使用

labelimg使用方法

三、yolo目标检测训练测试

3.1数据集处理

根据网盘下载文件(可以运行),解压后以pycharm的方式打开

提取码:JptC

标注后的数据集以下面图片的方式整理(文件包中已经全部整理完毕):

3.2目标检测训练

在ultralytics\ultralytics\cfg\datasets中新建一个数据加载文件a-data-myself.yaml【注意改成自己的绝对路径】:

编写代码后保存,代码内容如下:

python 复制代码
path: C:/Users/34866/OneDrive/Desktop/ultralytics/yolo-smile#自己的本地绝对路径
train: # train images (relative to 'path')  16551 images
  - images/train
val: # val images (relative to 'path')  4952 images
  - images/val
test: # test images (optional)
  - images/test

# Classes
names:
  0: smile#标签类型

新建一个训练文件train.py,编写后运行注意改成自己的绝对路径】,代码内容如下:

python 复制代码
import time
from ultralytics import YOLO


# yolo11模型训练:训练模型的数据为'a-data-myself.yaml',轮数为100,图片大小为640,设备为本地的GPU显卡,关闭多线程的加载,图像加载的批次大小为4,开启图片缓存
model = YOLO(r'C:/Users/34866/OneDrive/Desktop/ultralytics/pre-models/yolov8l.pt')  # load a pretrained model (recommended for training)
# results = model.train(data='A_my_data.yaml', epochs=100, imgsz=640, device=[0,], workers=0, batch=4, cache=True)  # GPU开始训练
# todo A_my_data.yaml请切换为你本地的绝对路径,如果是本地的绝对路径,请填写绝对路径
results = model.train(data=r'C:/Users/34866/OneDrive/Desktop/ultralytics/ultralytics/cfg/datasets/a-data-myself.yaml',
                      epochs=100, imgsz=640, device=[], workers=0, batch=2, cache=True, amp=False)  # 开始训练
time.sleep(10) # 睡眠10s,主要是用于服务器多次训练的过程中使用

运行结果如下:

运行后在ultralytics\run\runs\detect生成训练过程与结果:

3.3测试训练结果

新建一个检测文件single_detect.py,编写后运行注意改成自己的绝对路径】,代码内容如下:

python 复制代码
from ultralytics import YOLO

# Load a model
model = YOLO(r'C:\Users\34866\OneDrive\Desktop\ultralytics\run\runs\detect\train\weights\best.pt')  # pretrained YOLOv8n model

# Run batched inference on a list of images
results = model(["C:/Users/34866/OneDrive/Desktop/ultralytics/test.jpg"], conf=0.25, iou=0.95)  # return a list of Results objects

# Process results list
for result in results:
    boxes = result.boxes  # Boxes object for bounding box outputs
    masks = result.masks  # Masks object for segmentation masks outputs
    keypoints = result.keypoints  # Keypoints object for pose outputs
    probs = result.probs  # Probs object for classification outputs
    obb = result.obb  # Oriented boxes object for OBB outputs
    result.show()  # display to screen
    result.save(filename="images/resources/result.jpg")  # save to disk

下面是一些测试结果:【图片侵权联系删除】

相关推荐
叶凡要飞1 天前
RTX5060Ti安装双系统ubuntu22.04各种踩坑点(黑屏,引导区修复、装驱动、server版本安装)
人工智能·python·yolo·ubuntu·机器学习·操作系统
CoookeCola1 天前
MovieNet(A holistic dataset for movie understanding) :面向电影理解的多模态综合数据集与工具链
数据仓库·人工智能·目标检测·计算机视觉·数据挖掘
FL16238631291 天前
无人机视角河道多目标垃圾检测数据集VOC+YOLO格式1736张6类别
yolo·无人机
XIAO·宝1 天前
深度学习------YOLOV1和YOLOV2
人工智能·深度学习·yolo
禾昂.1 天前
从 YOLO V1 到 V2:目标检测领域的一次关键技术迭代
yolo·目标检测·目标跟踪
应用市场2 天前
OpenCV深度学习:目标检测、人脸识别与智能视频分
深度学习·opencv·目标检测
LiJieNiub2 天前
YOLOv3:目标检测领域的经典革新
人工智能·计算机视觉·目标跟踪
Python图像识别2 天前
71_基于深度学习的布料瑕疵检测识别系统(yolo11、yolov8、yolov5+UI界面+Python项目源码+模型+标注好的数据集)
python·深度学习·yolo
LiJieNiub2 天前
读懂目标检测:从基础概念到主流算法
人工智能·计算机视觉·目标跟踪
OAFD.2 天前
YOLOv3 详解:核心改进、网络架构与目标检测实践
网络·yolo·目标检测